异方差回归模型的加权验证,以获得更好的选择

Yoonsuh Jung, Hayoung Kim
{"title":"异方差回归模型的加权验证,以获得更好的选择","authors":"Yoonsuh Jung, Hayoung Kim","doi":"10.1002/sam.11544","DOIUrl":null,"url":null,"abstract":"In this paper, we suggest a method for improving model selection in the presence of heteroscedasticity. For this purpose, we measure the heteroscedasticity in the data using the inter‐quartile range (IQR) of the fitted values under the framework of cross‐validation. To find the IQR, we fit 0.25 and 0.75 generic quantile regression using the training data. The two models then predict the values of the response variable at 0.25 and 0.75 quantiles in the test data, which yields predicted IQR. To reduce the effect of heteroscedastic data in the model selection, we propose to use weighted prediction error. The inverse of the predicted IQR is utilized to estimate the weights. The proposed method reduces the impact of large prediction errors via weighted prediction and leads to better model and parameter selection. The benefits of the proposed method are demonstrated in simulations and with two real data sets.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted validation of heteroscedastic regression models for better selection\",\"authors\":\"Yoonsuh Jung, Hayoung Kim\",\"doi\":\"10.1002/sam.11544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we suggest a method for improving model selection in the presence of heteroscedasticity. For this purpose, we measure the heteroscedasticity in the data using the inter‐quartile range (IQR) of the fitted values under the framework of cross‐validation. To find the IQR, we fit 0.25 and 0.75 generic quantile regression using the training data. The two models then predict the values of the response variable at 0.25 and 0.75 quantiles in the test data, which yields predicted IQR. To reduce the effect of heteroscedastic data in the model selection, we propose to use weighted prediction error. The inverse of the predicted IQR is utilized to estimate the weights. The proposed method reduces the impact of large prediction errors via weighted prediction and leads to better model and parameter selection. The benefits of the proposed method are demonstrated in simulations and with two real data sets.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种在异方差存在下改进模型选择的方法。为此,我们在交叉验证的框架下,使用拟合值的四分位间距(IQR)来测量数据的异方差。为了找到IQR,我们使用训练数据拟合0.25和0.75通用分位数回归。然后,这两个模型在测试数据中预测0.25和0.75分位数处的响应变量值,从而产生预测的IQR。为了减少异方差数据对模型选择的影响,我们提出使用加权预测误差。利用预测IQR的倒数来估计权重。该方法通过加权预测减少了大预测误差的影响,从而更好地选择模型和参数。通过仿真和两个真实数据集验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted validation of heteroscedastic regression models for better selection
In this paper, we suggest a method for improving model selection in the presence of heteroscedasticity. For this purpose, we measure the heteroscedasticity in the data using the inter‐quartile range (IQR) of the fitted values under the framework of cross‐validation. To find the IQR, we fit 0.25 and 0.75 generic quantile regression using the training data. The two models then predict the values of the response variable at 0.25 and 0.75 quantiles in the test data, which yields predicted IQR. To reduce the effect of heteroscedastic data in the model selection, we propose to use weighted prediction error. The inverse of the predicted IQR is utilized to estimate the weights. The proposed method reduces the impact of large prediction errors via weighted prediction and leads to better model and parameter selection. The benefits of the proposed method are demonstrated in simulations and with two real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信