基于子轨迹聚类的多粒度轨迹聚类可视化

Cheng Chang, Baoyao Zhou
{"title":"基于子轨迹聚类的多粒度轨迹聚类可视化","authors":"Cheng Chang, Baoyao Zhou","doi":"10.1109/ICDMW.2009.24","DOIUrl":null,"url":null,"abstract":"With the surging of the requirements of location-based services, mining various interesting patterns from the spatial data becomes more and more important. In this paper, we propose an approach for visualizing the trajectory clustering results based on sub-trajectory clusters discovered from large-scale trajectory data. At first, we segment each trajectory into a set of sub-trajectories by detecting its corner points. And then, we choose Fréchet distance to compute the similarity between sub-trajectories, and use a density-based clustering method to cluster sub-trajectories and get an augmented order of the sub-trajectories. The visualization method can support multi-granularity views of the generated sub-trajectory clusters. Experiments have demonstrated the applicability and benefits of the proposed approach.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Multi-granularity Visualization of Trajectory Clusters Using Sub-trajectory Clustering\",\"authors\":\"Cheng Chang, Baoyao Zhou\",\"doi\":\"10.1109/ICDMW.2009.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the surging of the requirements of location-based services, mining various interesting patterns from the spatial data becomes more and more important. In this paper, we propose an approach for visualizing the trajectory clustering results based on sub-trajectory clusters discovered from large-scale trajectory data. At first, we segment each trajectory into a set of sub-trajectories by detecting its corner points. And then, we choose Fréchet distance to compute the similarity between sub-trajectories, and use a density-based clustering method to cluster sub-trajectories and get an augmented order of the sub-trajectories. The visualization method can support multi-granularity views of the generated sub-trajectory clusters. Experiments have demonstrated the applicability and benefits of the proposed approach.\",\"PeriodicalId\":351078,\"journal\":{\"name\":\"2009 IEEE International Conference on Data Mining Workshops\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2009.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

随着基于位置的服务需求的激增,从空间数据中挖掘各种有趣的模式变得越来越重要。本文提出了一种基于从大规模轨迹数据中发现的子轨迹聚类的轨迹聚类结果可视化方法。首先,我们通过检测每条轨迹的角点,将其分割成一组子轨迹。在此基础上,选择fracimchet距离计算子轨迹之间的相似度,并采用基于密度的聚类方法对子轨迹进行聚类,得到子轨迹的增广阶数。可视化方法可以支持生成的子轨迹簇的多粒度视图。实验证明了该方法的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-granularity Visualization of Trajectory Clusters Using Sub-trajectory Clustering
With the surging of the requirements of location-based services, mining various interesting patterns from the spatial data becomes more and more important. In this paper, we propose an approach for visualizing the trajectory clustering results based on sub-trajectory clusters discovered from large-scale trajectory data. At first, we segment each trajectory into a set of sub-trajectories by detecting its corner points. And then, we choose Fréchet distance to compute the similarity between sub-trajectories, and use a density-based clustering method to cluster sub-trajectories and get an augmented order of the sub-trajectories. The visualization method can support multi-granularity views of the generated sub-trajectory clusters. Experiments have demonstrated the applicability and benefits of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信