基于加权局部二值模式的面部表情识别

M. Shoyaib, M. Abdullah-Al-Wadud, Jo Moo Youl, Muhammad Mahbub Alam, O. Chae
{"title":"基于加权局部二值模式的面部表情识别","authors":"M. Shoyaib, M. Abdullah-Al-Wadud, Jo Moo Youl, Muhammad Mahbub Alam, O. Chae","doi":"10.1109/ICCITECHN.2010.5723877","DOIUrl":null,"url":null,"abstract":"We introduce a facial expression recognition method, which incorporates a weight to the Local Binary Pattern (LBP), and generates solid expression features. Furthermore, we use Adaboost to select a small set of prominent features, which is used by the Support Vector Machine (SVM) to classify facial expressions efficiently. Experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of both accuracy and complexities.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Facial expression recognition based on a weighted Local Binary Pattern\",\"authors\":\"M. Shoyaib, M. Abdullah-Al-Wadud, Jo Moo Youl, Muhammad Mahbub Alam, O. Chae\",\"doi\":\"10.1109/ICCITECHN.2010.5723877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a facial expression recognition method, which incorporates a weight to the Local Binary Pattern (LBP), and generates solid expression features. Furthermore, we use Adaboost to select a small set of prominent features, which is used by the Support Vector Machine (SVM) to classify facial expressions efficiently. Experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of both accuracy and complexities.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种面部表情识别方法,该方法在局部二值模式(Local Binary Pattern, LBP)中加入权重,生成实体表情特征。此外,我们使用Adaboost选择一小部分显著特征,并将其用于支持向量机(SVM)对面部表情进行有效分类。实验结果表明,我们的方法在准确性和复杂性方面都优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial expression recognition based on a weighted Local Binary Pattern
We introduce a facial expression recognition method, which incorporates a weight to the Local Binary Pattern (LBP), and generates solid expression features. Furthermore, we use Adaboost to select a small set of prominent features, which is used by the Support Vector Machine (SVM) to classify facial expressions efficiently. Experimental results demonstrate that our method outperforms the state-of-the-art methods in terms of both accuracy and complexities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信