基于扩展卡尔曼滤波的移动机器人定位

A. eman, H. Ramdane
{"title":"基于扩展卡尔曼滤波的移动机器人定位","authors":"A. eman, H. Ramdane","doi":"10.1109/ICCAIS48893.2020.9096805","DOIUrl":null,"url":null,"abstract":"Localizing the mobile robot in an indoor environment is one of the problems encountered repeatedly. Achieving the target precisely in any environment is not an easy task since there are noises and obstacles in the surrounding environment. Therefore, filtering the signals to reduce noises is essential for more accurate and precise motion. In this paper, we selected the extended Kalman filter, which is used for non-linear models’ signals to predict the coordinates of a wheeled mobile robot. We tested the efficiency of this filter under three noise cases: no noise, Gaussian noise and non-Gaussian noise using MATLAB software.","PeriodicalId":422184,"journal":{"name":"2020 3rd International Conference on Computer Applications & Information Security (ICCAIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Mobile Robot Localization Using Extended Kalman Filter\",\"authors\":\"A. eman, H. Ramdane\",\"doi\":\"10.1109/ICCAIS48893.2020.9096805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localizing the mobile robot in an indoor environment is one of the problems encountered repeatedly. Achieving the target precisely in any environment is not an easy task since there are noises and obstacles in the surrounding environment. Therefore, filtering the signals to reduce noises is essential for more accurate and precise motion. In this paper, we selected the extended Kalman filter, which is used for non-linear models’ signals to predict the coordinates of a wheeled mobile robot. We tested the efficiency of this filter under three noise cases: no noise, Gaussian noise and non-Gaussian noise using MATLAB software.\",\"PeriodicalId\":422184,\"journal\":{\"name\":\"2020 3rd International Conference on Computer Applications & Information Security (ICCAIS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Computer Applications & Information Security (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS48893.2020.9096805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computer Applications & Information Security (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS48893.2020.9096805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

移动机器人在室内环境中的定位是经常遇到的问题之一。在任何环境下精确地实现目标都不是一件容易的事情,因为周围环境中存在噪音和障碍物。因此,滤波信号以减少噪声对于更精确和精确的运动是必不可少的。在本文中,我们选择了扩展卡尔曼滤波器,它用于非线性模型的信号来预测轮式移动机器人的坐标。利用MATLAB软件测试了该滤波器在无噪声、高斯噪声和非高斯噪声三种噪声情况下的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile Robot Localization Using Extended Kalman Filter
Localizing the mobile robot in an indoor environment is one of the problems encountered repeatedly. Achieving the target precisely in any environment is not an easy task since there are noises and obstacles in the surrounding environment. Therefore, filtering the signals to reduce noises is essential for more accurate and precise motion. In this paper, we selected the extended Kalman filter, which is used for non-linear models’ signals to predict the coordinates of a wheeled mobile robot. We tested the efficiency of this filter under three noise cases: no noise, Gaussian noise and non-Gaussian noise using MATLAB software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信