{"title":"RC-GNN:基于自定义图神经网络的快速准确的信号线延迟估计","authors":"Linyu Zhu, Yue Gu, Xinfei Guo","doi":"10.1109/AICAS57966.2023.10168562","DOIUrl":null,"url":null,"abstract":"As interconnect delay becomes more dominate in a timing path compared to the gate delay, accurate yet fast estimation of wire delay during the signoff stage is required. Prior machine learning-based wire delay estimation approaches either relied on tedious feature extraction processes or failed to capture the net topology information, incurring long turn around time. In this paper, we propose to leverage the power of graph neural networks (GNN) to estimate the interconnect delays during signoff. Different from other GNN-assisted timing analysis methods that were usually applied to a netlist, we harness the global message passing graph representation learning on RC graph directly to perform ultra-fast net delay estimation without requiring extra features. Furthermore, pre-processed graph features can be added to boost the estimation accuracy with slight run time penalty. Our proposed customized GNN models have been evaluated with the industrial design and compared against state of the art ML-based wire delay estimator. It shows that the proposed model outperforms the state-of-the-art ML-based signoff wire delay estimator by 4x in terms of run time while achieving similar accuracy levels.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RC-GNN: Fast and Accurate Signoff Wire Delay Estimation with Customized Graph Neural Networks\",\"authors\":\"Linyu Zhu, Yue Gu, Xinfei Guo\",\"doi\":\"10.1109/AICAS57966.2023.10168562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As interconnect delay becomes more dominate in a timing path compared to the gate delay, accurate yet fast estimation of wire delay during the signoff stage is required. Prior machine learning-based wire delay estimation approaches either relied on tedious feature extraction processes or failed to capture the net topology information, incurring long turn around time. In this paper, we propose to leverage the power of graph neural networks (GNN) to estimate the interconnect delays during signoff. Different from other GNN-assisted timing analysis methods that were usually applied to a netlist, we harness the global message passing graph representation learning on RC graph directly to perform ultra-fast net delay estimation without requiring extra features. Furthermore, pre-processed graph features can be added to boost the estimation accuracy with slight run time penalty. Our proposed customized GNN models have been evaluated with the industrial design and compared against state of the art ML-based wire delay estimator. It shows that the proposed model outperforms the state-of-the-art ML-based signoff wire delay estimator by 4x in terms of run time while achieving similar accuracy levels.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RC-GNN: Fast and Accurate Signoff Wire Delay Estimation with Customized Graph Neural Networks
As interconnect delay becomes more dominate in a timing path compared to the gate delay, accurate yet fast estimation of wire delay during the signoff stage is required. Prior machine learning-based wire delay estimation approaches either relied on tedious feature extraction processes or failed to capture the net topology information, incurring long turn around time. In this paper, we propose to leverage the power of graph neural networks (GNN) to estimate the interconnect delays during signoff. Different from other GNN-assisted timing analysis methods that were usually applied to a netlist, we harness the global message passing graph representation learning on RC graph directly to perform ultra-fast net delay estimation without requiring extra features. Furthermore, pre-processed graph features can be added to boost the estimation accuracy with slight run time penalty. Our proposed customized GNN models have been evaluated with the industrial design and compared against state of the art ML-based wire delay estimator. It shows that the proposed model outperforms the state-of-the-art ML-based signoff wire delay estimator by 4x in terms of run time while achieving similar accuracy levels.