基于深度神经网络的水下场景分割

Yang Zhou, Jiangtao Wang, Baihua Li, Q. Meng, Emanuele Rocco, Andrea Saiani
{"title":"基于深度神经网络的水下场景分割","authors":"Yang Zhou, Jiangtao Wang, Baihua Li, Q. Meng, Emanuele Rocco, Andrea Saiani","doi":"10.31256/UKRAS19.12","DOIUrl":null,"url":null,"abstract":"A deep neural network architecture is proposed in\nthis paper for underwater scene semantic segmentation. The\narchitecture consists of encoder and decoder networks. Pretrained VGG-16 network is used as a feature extractor, while the\ndecoder learns to expand the lower resolution feature maps. The\nnetwork applies max un-pooling operator to avoid large number\nof learnable parameters, and, in order to make use of the feature\nmaps in encoder network, it concatenates the feature maps with\ndecoder and encoder for lower resolution feature maps. Our\narchitecture shows capabilities of faster convergence and better\naccuracy. To get a clear view of underwater scene, an underwater\nenhancement neural network architecture is described in this\npaper and applied for training. It speeds up the training process\nand convergence rate in training.","PeriodicalId":424229,"journal":{"name":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Underwater Scene Segmentation by Deep Neural Network\",\"authors\":\"Yang Zhou, Jiangtao Wang, Baihua Li, Q. Meng, Emanuele Rocco, Andrea Saiani\",\"doi\":\"10.31256/UKRAS19.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deep neural network architecture is proposed in\\nthis paper for underwater scene semantic segmentation. The\\narchitecture consists of encoder and decoder networks. Pretrained VGG-16 network is used as a feature extractor, while the\\ndecoder learns to expand the lower resolution feature maps. The\\nnetwork applies max un-pooling operator to avoid large number\\nof learnable parameters, and, in order to make use of the feature\\nmaps in encoder network, it concatenates the feature maps with\\ndecoder and encoder for lower resolution feature maps. Our\\narchitecture shows capabilities of faster convergence and better\\naccuracy. To get a clear view of underwater scene, an underwater\\nenhancement neural network architecture is described in this\\npaper and applied for training. It speeds up the training process\\nand convergence rate in training.\",\"PeriodicalId\":424229,\"journal\":{\"name\":\"UK-RAS19 Conference: \\\"Embedded Intelligence: Enabling and Supporting RAS Technologies\\\" Proceedings\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UK-RAS19 Conference: \\\"Embedded Intelligence: Enabling and Supporting RAS Technologies\\\" Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31256/UKRAS19.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS19 Conference: \"Embedded Intelligence: Enabling and Supporting RAS Technologies\" Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/UKRAS19.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种用于水下场景语义分割的深度神经网络结构。该架构由编码器和解码器网络组成。使用预训练的VGG-16网络作为特征提取器,而解码器学习扩展低分辨率特征映射。该网络采用最大解池算子,避免了大量可学习参数的产生,并且为了充分利用编码器网络中的特征映射,将特征映射与解码器和编码器连接起来,以获得较低分辨率的特征映射。我们的架构显示出更快的收敛和更好的精度。为了获得清晰的水下场景视图,本文描述了一种水下增强神经网络架构,并将其应用于训练。它加快了训练过程和训练收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Underwater Scene Segmentation by Deep Neural Network
A deep neural network architecture is proposed in this paper for underwater scene semantic segmentation. The architecture consists of encoder and decoder networks. Pretrained VGG-16 network is used as a feature extractor, while the decoder learns to expand the lower resolution feature maps. The network applies max un-pooling operator to avoid large number of learnable parameters, and, in order to make use of the feature maps in encoder network, it concatenates the feature maps with decoder and encoder for lower resolution feature maps. Our architecture shows capabilities of faster convergence and better accuracy. To get a clear view of underwater scene, an underwater enhancement neural network architecture is described in this paper and applied for training. It speeds up the training process and convergence rate in training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信