多时滞线性微分方程稳定域的构造

I. Klevchuk, M. Hrytchuk
{"title":"多时滞线性微分方程稳定域的构造","authors":"I. Klevchuk, M. Hrytchuk","doi":"10.31861/bmj2022.01.06","DOIUrl":null,"url":null,"abstract":"The aim of the present article is to investigate of solutions stability of linear autonomous differential equations with retarded argument. The investigation of stability can be reduced to the root location problem for the characteristic equation. For the linear differential equation with several delays it is obtained the necessary and sufficient conditions, for all the roots of the characteristic equation equation to have negative real part (and hence the zero solution to be asymptotically stable). For the scalar delay differential equation\n$$\n\\frac{dz}{dt}=c z(t) + a_1 z(t-1) + a_2 z(t-2) + ... + a_n z(t-n),\n$$\nwith fixed $c$, $c \\in \\mathbb{R}$, $a_k \\in \\mathbb{R}$, $1 \\leq k \\leq n$,\nstability domains in the parameter plane are obtained. We investigate the boundedness conditions and construct a domain of stability for linear autonomous differential equation with several delays. We use D-partition method, argument principle and numerical methods to construct of stability domains.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONSTRUCTION OF STABILITY DOMAINS FOR LINEAR DIFFERENTIAL EQUATIONS WITH SEVERAL DELAYS\",\"authors\":\"I. Klevchuk, M. Hrytchuk\",\"doi\":\"10.31861/bmj2022.01.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the present article is to investigate of solutions stability of linear autonomous differential equations with retarded argument. The investigation of stability can be reduced to the root location problem for the characteristic equation. For the linear differential equation with several delays it is obtained the necessary and sufficient conditions, for all the roots of the characteristic equation equation to have negative real part (and hence the zero solution to be asymptotically stable). For the scalar delay differential equation\\n$$\\n\\\\frac{dz}{dt}=c z(t) + a_1 z(t-1) + a_2 z(t-2) + ... + a_n z(t-n),\\n$$\\nwith fixed $c$, $c \\\\in \\\\mathbb{R}$, $a_k \\\\in \\\\mathbb{R}$, $1 \\\\leq k \\\\leq n$,\\nstability domains in the parameter plane are obtained. We investigate the boundedness conditions and construct a domain of stability for linear autonomous differential equation with several delays. We use D-partition method, argument principle and numerical methods to construct of stability domains.\",\"PeriodicalId\":196726,\"journal\":{\"name\":\"Bukovinian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2022.01.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2022.01.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究一类时滞变量线性自治微分方程解的稳定性。稳定性的研究可以简化为特征方程的根定位问题。对于具有多个时滞的线性微分方程,得到了特征方程的所有根均具有负实部(因而零解渐近稳定)的充分必要条件。对于固定$c$, $c \in \mathbb{R}$, $a_k \in \mathbb{R}$, $1 \leq k \leq n$的标量延迟微分方程$$\frac{dz}{dt}=c z(t) + a_1 z(t-1) + a_2 z(t-2) + ... + a_n z(t-n),$$,得到了参数平面上的稳定域。研究了一类多时滞线性自治微分方程的有界性条件,构造了一个稳定定域。利用d划分法、参数原理和数值方法构造了稳定域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONSTRUCTION OF STABILITY DOMAINS FOR LINEAR DIFFERENTIAL EQUATIONS WITH SEVERAL DELAYS
The aim of the present article is to investigate of solutions stability of linear autonomous differential equations with retarded argument. The investigation of stability can be reduced to the root location problem for the characteristic equation. For the linear differential equation with several delays it is obtained the necessary and sufficient conditions, for all the roots of the characteristic equation equation to have negative real part (and hence the zero solution to be asymptotically stable). For the scalar delay differential equation $$ \frac{dz}{dt}=c z(t) + a_1 z(t-1) + a_2 z(t-2) + ... + a_n z(t-n), $$ with fixed $c$, $c \in \mathbb{R}$, $a_k \in \mathbb{R}$, $1 \leq k \leq n$, stability domains in the parameter plane are obtained. We investigate the boundedness conditions and construct a domain of stability for linear autonomous differential equation with several delays. We use D-partition method, argument principle and numerical methods to construct of stability domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信