背面MOS电池的双面串联太阳能电池板在沙漠中的应用

F. L. N. Santos, M. Watanabe, William Chiappim Júnior, S. G. S. Filho, J. Martino
{"title":"背面MOS电池的双面串联太阳能电池板在沙漠中的应用","authors":"F. L. N. Santos, M. Watanabe, William Chiappim Júnior, S. G. S. Filho, J. Martino","doi":"10.1109/SBMicro.2019.8919381","DOIUrl":null,"url":null,"abstract":"This work proposes bifacial tandem solar panels with MOS cells on the backside aiming at applications in deserts. MOS solar cells were fabricated using Al(200nm)/ Mg(30nm)/SiO2 (1.73nm)/Si-p structures. The gate oxide was grown by rapid thermal processing (RTP) and the main parameters studied were extracted by means of electric characterization through IxV curves of the MOS solar cells. For the operation temperature of the MOS cell varying from 25°C to 70°C, it was shown that the loss of the conversion efficiency ($\\eta$) was at least 25% lower compared to conventional solar modules based on PN junctions and multi-crystalline-Si [9, 12]. As a result, the use of MOS solar cell on the backside of two different generations of CdS_CdTe cells with different conversion efficiencies at 25° C (15.8% and 21.0%), operating at the typical temperature of 70°C in deserts, promotes the increase of the conversion efficiency of 10.0% for CdS_CdTe1 (15.8%) and 6.0% for CdS_CdTe2 (21.0%).","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bifacial Tandem Solar Panels with MOS Cells on the Backside for Applications in Deserts\",\"authors\":\"F. L. N. Santos, M. Watanabe, William Chiappim Júnior, S. G. S. Filho, J. Martino\",\"doi\":\"10.1109/SBMicro.2019.8919381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes bifacial tandem solar panels with MOS cells on the backside aiming at applications in deserts. MOS solar cells were fabricated using Al(200nm)/ Mg(30nm)/SiO2 (1.73nm)/Si-p structures. The gate oxide was grown by rapid thermal processing (RTP) and the main parameters studied were extracted by means of electric characterization through IxV curves of the MOS solar cells. For the operation temperature of the MOS cell varying from 25°C to 70°C, it was shown that the loss of the conversion efficiency ($\\\\eta$) was at least 25% lower compared to conventional solar modules based on PN junctions and multi-crystalline-Si [9, 12]. As a result, the use of MOS solar cell on the backside of two different generations of CdS_CdTe cells with different conversion efficiencies at 25° C (15.8% and 21.0%), operating at the typical temperature of 70°C in deserts, promotes the increase of the conversion efficiency of 10.0% for CdS_CdTe1 (15.8%) and 6.0% for CdS_CdTe2 (21.0%).\",\"PeriodicalId\":403446,\"journal\":{\"name\":\"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBMicro.2019.8919381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBMicro.2019.8919381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究提出了背面带有MOS电池的双面串联太阳能电池板,旨在在沙漠中应用。采用Al(200nm)/ Mg(30nm)/SiO2 (1.73nm)/Si-p结构制备MOS太阳能电池。采用快速热处理(RTP)法生长栅极氧化物,并通过电池的IxV曲线提取其主要参数。当MOS电池的工作温度从25°C变化到70°C时,研究表明,与基于PN结和多晶硅的传统太阳能组件相比,转换效率的损失($\eta$)至少降低了25%[9,12]。结果表明,在沙漠典型温度为70℃的条件下,将MOS太阳能电池应用于具有不同转换效率的两代CdS_CdTe电池背面,可使CdS_CdTe1电池的转换效率提高10.0% (15.8%),CdS_CdTe2电池的转换效率提高6.0%(21.0%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifacial Tandem Solar Panels with MOS Cells on the Backside for Applications in Deserts
This work proposes bifacial tandem solar panels with MOS cells on the backside aiming at applications in deserts. MOS solar cells were fabricated using Al(200nm)/ Mg(30nm)/SiO2 (1.73nm)/Si-p structures. The gate oxide was grown by rapid thermal processing (RTP) and the main parameters studied were extracted by means of electric characterization through IxV curves of the MOS solar cells. For the operation temperature of the MOS cell varying from 25°C to 70°C, it was shown that the loss of the conversion efficiency ($\eta$) was at least 25% lower compared to conventional solar modules based on PN junctions and multi-crystalline-Si [9, 12]. As a result, the use of MOS solar cell on the backside of two different generations of CdS_CdTe cells with different conversion efficiencies at 25° C (15.8% and 21.0%), operating at the typical temperature of 70°C in deserts, promotes the increase of the conversion efficiency of 10.0% for CdS_CdTe1 (15.8%) and 6.0% for CdS_CdTe2 (21.0%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信