基于均方根法的感应电机电气故障诊断与检测

A. Akrad, R. Sehab, Fadi Alyoussef
{"title":"基于均方根法的感应电机电气故障诊断与检测","authors":"A. Akrad, R. Sehab, Fadi Alyoussef","doi":"10.1109/ICCAD55197.2022.9853878","DOIUrl":null,"url":null,"abstract":"Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a new method is developed for fault detection using residual errors generated by the root mean square (RMS) of phase currents. This approach is based on an asymmetric nonlinear model of Induction Machine where the winding fault of the three axes frame state space is taken into account. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.","PeriodicalId":436377,"journal":{"name":"2022 International Conference on Control, Automation and Diagnosis (ICCAD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric Fault Diagnosis and Detection in an Induction Machine Using RMS Based Method\",\"authors\":\"A. Akrad, R. Sehab, Fadi Alyoussef\",\"doi\":\"10.1109/ICCAD55197.2022.9853878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a new method is developed for fault detection using residual errors generated by the root mean square (RMS) of phase currents. This approach is based on an asymmetric nonlinear model of Induction Machine where the winding fault of the three axes frame state space is taken into account. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.\",\"PeriodicalId\":436377,\"journal\":{\"name\":\"2022 International Conference on Control, Automation and Diagnosis (ICCAD)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Control, Automation and Diagnosis (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD55197.2022.9853878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Control, Automation and Diagnosis (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD55197.2022.9853878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,感应电机由于其与其他技术相比的优势而广泛应用于工业。事实上,由于它们的可靠性、稳健性和成本,市场需求很大。本文主要研究三相感应电机的故障诊断、检测和隔离问题。其中选择了匝间短路故障、电流传感器故障和单相断路故障进行处理。然而,提出了一种利用相电流均方根产生的残差进行故障检测的新方法。该方法基于异步电机的非对称非线性模型,考虑了三轴机架状态空间的绕组故障。此外,采用电流传感器冗余和传感器故障检测与隔离(FDI),保证感应电机驱动的安全运行。最后,在正常运行和故障运行模式下进行了仿真验证,验证了该方法对三种类型故障的检测和定位具有较高的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electric Fault Diagnosis and Detection in an Induction Machine Using RMS Based Method
Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a new method is developed for fault detection using residual errors generated by the root mean square (RMS) of phase currents. This approach is based on an asymmetric nonlinear model of Induction Machine where the winding fault of the three axes frame state space is taken into account. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信