基于多线程和多流的多gpu系统SpMV性能优化

Ping Guo, Changjiang Zhang
{"title":"基于多线程和多流的多gpu系统SpMV性能优化","authors":"Ping Guo, Changjiang Zhang","doi":"10.1109/SBAC-PADW.2016.20","DOIUrl":null,"url":null,"abstract":"Sparse matrix-vector multiplication (SpMV) is a key operation in scientific computing and engineering ap-plications. This paper presents an optimization strategy to improve SpMV performance on the multi-GPU systems by adopting OpenMP threads and multiple CUDA streams. We propose an efficient scheme to control multiple GPUs jointly complete SpMV computations by making use of OpenMP threads. Moreover, we adopt streamed approach to increase concurrency to further improve SpMV performance. In our paper, we use HYB (Hybrid ELL/COO), a hybrid sparse storage format, to demonstrate the effectiveness of our proposed approach. Our experimental results show that our approach achieves an average speedup of 3.80 over the existing SpMV implementation on a single GPU.","PeriodicalId":186179,"journal":{"name":"2016 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance Optimization for SpMV on Multi-GPU Systems Using Threads and Multiple Streams\",\"authors\":\"Ping Guo, Changjiang Zhang\",\"doi\":\"10.1109/SBAC-PADW.2016.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse matrix-vector multiplication (SpMV) is a key operation in scientific computing and engineering ap-plications. This paper presents an optimization strategy to improve SpMV performance on the multi-GPU systems by adopting OpenMP threads and multiple CUDA streams. We propose an efficient scheme to control multiple GPUs jointly complete SpMV computations by making use of OpenMP threads. Moreover, we adopt streamed approach to increase concurrency to further improve SpMV performance. In our paper, we use HYB (Hybrid ELL/COO), a hybrid sparse storage format, to demonstrate the effectiveness of our proposed approach. Our experimental results show that our approach achieves an average speedup of 3.80 over the existing SpMV implementation on a single GPU.\",\"PeriodicalId\":186179,\"journal\":{\"name\":\"2016 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PADW.2016.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PADW.2016.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

稀疏矩阵向量乘法(SpMV)是科学计算和工程应用中的关键运算。本文提出了一种在多gpu系统上采用OpenMP线程和多CUDA流来提高SpMV性能的优化策略。我们提出了一种利用OpenMP线程控制多个gpu共同完成SpMV计算的有效方案。此外,我们采用流化的方法来提高并发性,进一步提高SpMV的性能。在本文中,我们使用混合稀疏存储格式HYB (Hybrid ELL/COO)来证明我们提出的方法的有效性。我们的实验结果表明,我们的方法比现有的SpMV实现在单个GPU上的平均加速提高了3.80。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Optimization for SpMV on Multi-GPU Systems Using Threads and Multiple Streams
Sparse matrix-vector multiplication (SpMV) is a key operation in scientific computing and engineering ap-plications. This paper presents an optimization strategy to improve SpMV performance on the multi-GPU systems by adopting OpenMP threads and multiple CUDA streams. We propose an efficient scheme to control multiple GPUs jointly complete SpMV computations by making use of OpenMP threads. Moreover, we adopt streamed approach to increase concurrency to further improve SpMV performance. In our paper, we use HYB (Hybrid ELL/COO), a hybrid sparse storage format, to demonstrate the effectiveness of our proposed approach. Our experimental results show that our approach achieves an average speedup of 3.80 over the existing SpMV implementation on a single GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信