层状纳米孔铜中嵌入的稀钼原子加速了析氢反应

M. Luo, Wei Peng, Yang Zhao, J. Lan, Ming Peng, Jiuhui Han, Hongju Li, Yongwen Tan
{"title":"层状纳米孔铜中嵌入的稀钼原子加速了析氢反应","authors":"M. Luo, Wei Peng, Yang Zhao, J. Lan, Ming Peng, Jiuhui Han, Hongju Li, Yongwen Tan","doi":"10.2139/ssrn.3661930","DOIUrl":null,"url":null,"abstract":"Abstract The development of earth-abundant, non-noble, high-performance hydrogen evolution reaction (HER) electrocatalysts is still a highly challenging but vitally important issue for energy conversion system. Herein, we reported a self-supported Mo modified hierarchical nanoporous Cu as an efficient electrocatalyst for hydrogen evolution. The optimized nanoporous Cu-Mo electrocatalysts with extremely dilute Mo content exhibits a high HER activity with a negligible onset potential, a small Tafel slope, and an excellent durability in alkaline solution. The dealloying process provides nanoporous Cu-Mo electrocatalysts a unique three-dimensional interconnected bicontinuous nanoporous architecture, which can not only offer high-density catalytic active sites for HER, but also accelerate the desorption of hydrogen molecule from catalysts surface. Density functional theory (DFT) calculations reveal that the introducing of Mo into Cu matrix can accelerate water adsorption and dissociation and optimize adsorption-desorption energetics of H intermediates, thus improving the intrinsic HER activity of nanoporous Cu-Mo electrocatalysts.","PeriodicalId":237724,"journal":{"name":"EngRN: Materials Chemistry (Topic)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Dilute Molybdenum Atoms Embedded in Hierarchical Nanoporous Copper Accelerate the Hydrogen Evolution Reaction\",\"authors\":\"M. Luo, Wei Peng, Yang Zhao, J. Lan, Ming Peng, Jiuhui Han, Hongju Li, Yongwen Tan\",\"doi\":\"10.2139/ssrn.3661930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The development of earth-abundant, non-noble, high-performance hydrogen evolution reaction (HER) electrocatalysts is still a highly challenging but vitally important issue for energy conversion system. Herein, we reported a self-supported Mo modified hierarchical nanoporous Cu as an efficient electrocatalyst for hydrogen evolution. The optimized nanoporous Cu-Mo electrocatalysts with extremely dilute Mo content exhibits a high HER activity with a negligible onset potential, a small Tafel slope, and an excellent durability in alkaline solution. The dealloying process provides nanoporous Cu-Mo electrocatalysts a unique three-dimensional interconnected bicontinuous nanoporous architecture, which can not only offer high-density catalytic active sites for HER, but also accelerate the desorption of hydrogen molecule from catalysts surface. Density functional theory (DFT) calculations reveal that the introducing of Mo into Cu matrix can accelerate water adsorption and dissociation and optimize adsorption-desorption energetics of H intermediates, thus improving the intrinsic HER activity of nanoporous Cu-Mo electrocatalysts.\",\"PeriodicalId\":237724,\"journal\":{\"name\":\"EngRN: Materials Chemistry (Topic)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EngRN: Materials Chemistry (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3661930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Materials Chemistry (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3661930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

开发地球资源丰富、非贵金属、高性能的析氢反应(HER)电催化剂仍然是能量转换系统中一个极具挑战性但又至关重要的问题。在此,我们报道了一种自支撑Mo修饰的分层纳米多孔Cu作为氢析的有效电催化剂。优化后的Mo含量极稀的纳米孔Cu-Mo电催化剂表现出高的HER活性,起始电位可以忽略不计,塔菲尔斜率小,并且在碱性溶液中具有良好的耐久性。脱合金工艺为纳米孔Cu-Mo电催化剂提供了独特的三维互联双连续纳米孔结构,不仅可以为HER提供高密度的催化活性位点,还可以加速催化剂表面氢分子的脱附。密度泛函理论(DFT)计算表明,在Cu基体中引入Mo可以加速水的吸附和解离,优化H中间体的吸附-解吸能量,从而提高纳米孔Cu-Mo电催化剂的内在HER活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dilute Molybdenum Atoms Embedded in Hierarchical Nanoporous Copper Accelerate the Hydrogen Evolution Reaction
Abstract The development of earth-abundant, non-noble, high-performance hydrogen evolution reaction (HER) electrocatalysts is still a highly challenging but vitally important issue for energy conversion system. Herein, we reported a self-supported Mo modified hierarchical nanoporous Cu as an efficient electrocatalyst for hydrogen evolution. The optimized nanoporous Cu-Mo electrocatalysts with extremely dilute Mo content exhibits a high HER activity with a negligible onset potential, a small Tafel slope, and an excellent durability in alkaline solution. The dealloying process provides nanoporous Cu-Mo electrocatalysts a unique three-dimensional interconnected bicontinuous nanoporous architecture, which can not only offer high-density catalytic active sites for HER, but also accelerate the desorption of hydrogen molecule from catalysts surface. Density functional theory (DFT) calculations reveal that the introducing of Mo into Cu matrix can accelerate water adsorption and dissociation and optimize adsorption-desorption energetics of H intermediates, thus improving the intrinsic HER activity of nanoporous Cu-Mo electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信