高光谱图像中基于材料的边界检测

S. Al-khafaji, Ali Zia, J. Zhou, Alan Wee-Chung Liew
{"title":"高光谱图像中基于材料的边界检测","authors":"S. Al-khafaji, Ali Zia, J. Zhou, Alan Wee-Chung Liew","doi":"10.1109/DICTA.2017.8227462","DOIUrl":null,"url":null,"abstract":"Boundary detection in hyperspectral image (HSI) is a challenging task due to high data dimensionality and the that is distributed over the spectral bands. For this reason, there is a dearth of research on boundary detection in HSI. In this paper, we propose a spectral-spatial feature based statistical co-occurrence method for this task. We adopt probability density function (PDF) to estimate the co-occurrence of features at neighboring pixel pairs. Such cooccurrence is rare at the boundary and repeated within a region. To fully explore the material information embedded in HSI, joint spectral-spatial features are extracted at each pixel. The PDF values are then used to construct an affinity matrix for all pixels. After that, a spectral clustering algorithm is applied on the affinity matrix to produce boundaries. Our algorithm is evaluated on a dataset of real-world HSIs and compared with two alternative approaches. The results show that the proposed method is very effective in exploring object boundaries from HSI images.","PeriodicalId":194175,"journal":{"name":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Material Based Boundary Detection in Hyperspectral Images\",\"authors\":\"S. Al-khafaji, Ali Zia, J. Zhou, Alan Wee-Chung Liew\",\"doi\":\"10.1109/DICTA.2017.8227462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boundary detection in hyperspectral image (HSI) is a challenging task due to high data dimensionality and the that is distributed over the spectral bands. For this reason, there is a dearth of research on boundary detection in HSI. In this paper, we propose a spectral-spatial feature based statistical co-occurrence method for this task. We adopt probability density function (PDF) to estimate the co-occurrence of features at neighboring pixel pairs. Such cooccurrence is rare at the boundary and repeated within a region. To fully explore the material information embedded in HSI, joint spectral-spatial features are extracted at each pixel. The PDF values are then used to construct an affinity matrix for all pixels. After that, a spectral clustering algorithm is applied on the affinity matrix to produce boundaries. Our algorithm is evaluated on a dataset of real-world HSIs and compared with two alternative approaches. The results show that the proposed method is very effective in exploring object boundaries from HSI images.\",\"PeriodicalId\":194175,\"journal\":{\"name\":\"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2017.8227462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2017.8227462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高光谱图像的边界检测是一项具有挑战性的任务,因为高光谱图像的数据维数很高,而且数据分布在多个光谱波段。因此,对于HSI中边界检测的研究非常缺乏。本文提出了一种基于光谱-空间特征的统计共现方法。我们采用概率密度函数(PDF)来估计相邻像素对上特征的共现性。这种共同作用在边界上是罕见的,在一个区域内反复发生。为了充分挖掘嵌入在HSI中的材料信息,在每个像素处提取联合光谱空间特征。然后使用PDF值为所有像素构建关联矩阵。然后,对亲和矩阵应用谱聚类算法生成边界。我们的算法在真实的hsi数据集上进行了评估,并与两种替代方法进行了比较。实验结果表明,该方法能够有效地从HSI图像中提取目标边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material Based Boundary Detection in Hyperspectral Images
Boundary detection in hyperspectral image (HSI) is a challenging task due to high data dimensionality and the that is distributed over the spectral bands. For this reason, there is a dearth of research on boundary detection in HSI. In this paper, we propose a spectral-spatial feature based statistical co-occurrence method for this task. We adopt probability density function (PDF) to estimate the co-occurrence of features at neighboring pixel pairs. Such cooccurrence is rare at the boundary and repeated within a region. To fully explore the material information embedded in HSI, joint spectral-spatial features are extracted at each pixel. The PDF values are then used to construct an affinity matrix for all pixels. After that, a spectral clustering algorithm is applied on the affinity matrix to produce boundaries. Our algorithm is evaluated on a dataset of real-world HSIs and compared with two alternative approaches. The results show that the proposed method is very effective in exploring object boundaries from HSI images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信