塔斯曼海和胡安德富卡板块的电偶变形现象

S. N. White, A. Chave, J. Filloux
{"title":"塔斯曼海和胡安德富卡板块的电偶变形现象","authors":"S. N. White, A. Chave, J. Filloux","doi":"10.5636/JGG.49.1373","DOIUrl":null,"url":null,"abstract":"We have examined magnetotelluric (MT) data from the Juan de Fuca plate and the Tasman Sea to understand the influence of galvanic distortion by local and regional topography. Galvanic (non-inductive) distortion, caused by the build up of charge along conductivity gradients, is present in both regions. Its effects can be removed by decomposition of the impedance tensor assuming that both electric and magnetic field distortion are present. Unlike for most land-based data, magnetic field distortion is necessary to explain the seafloor data. Electric field distortion parameters resulting from the full decomposition can be interpreted equivalently in terms of either 2-D or 3-D distorting bodies, but these interpretations cannot be differentiated using MT observations alone. The data are compared to the overall geology to determine whether 2-D or 3-D distortion is more probable. The electric field distortion parameters in both locations behave appoximately frequency-independently, as expected for galvanic distortion. When interpreted in terms of 2-D distorting bodies, the superficial strikes were found to parallel the trends of coastlines and large-scale submarine features (e.g. mid-ocean ridges). This suggests that distortion both in the Tasman Sea and on the Juan de Fuca plate is dominantly galvanic and appears to be caused by regional, large-scale, 2-D features rather than small-scale, 3-D distorting bodies.","PeriodicalId":156587,"journal":{"name":"Journal of geomagnetism and geoelectricity","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Look at Galvanic Distortion in the Tasman Sea and the Juan de Fuca Plate\",\"authors\":\"S. N. White, A. Chave, J. Filloux\",\"doi\":\"10.5636/JGG.49.1373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have examined magnetotelluric (MT) data from the Juan de Fuca plate and the Tasman Sea to understand the influence of galvanic distortion by local and regional topography. Galvanic (non-inductive) distortion, caused by the build up of charge along conductivity gradients, is present in both regions. Its effects can be removed by decomposition of the impedance tensor assuming that both electric and magnetic field distortion are present. Unlike for most land-based data, magnetic field distortion is necessary to explain the seafloor data. Electric field distortion parameters resulting from the full decomposition can be interpreted equivalently in terms of either 2-D or 3-D distorting bodies, but these interpretations cannot be differentiated using MT observations alone. The data are compared to the overall geology to determine whether 2-D or 3-D distortion is more probable. The electric field distortion parameters in both locations behave appoximately frequency-independently, as expected for galvanic distortion. When interpreted in terms of 2-D distorting bodies, the superficial strikes were found to parallel the trends of coastlines and large-scale submarine features (e.g. mid-ocean ridges). This suggests that distortion both in the Tasman Sea and on the Juan de Fuca plate is dominantly galvanic and appears to be caused by regional, large-scale, 2-D features rather than small-scale, 3-D distorting bodies.\",\"PeriodicalId\":156587,\"journal\":{\"name\":\"Journal of geomagnetism and geoelectricity\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of geomagnetism and geoelectricity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5636/JGG.49.1373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of geomagnetism and geoelectricity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5636/JGG.49.1373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们检查了胡安·德·富卡板块和塔斯曼海的大地电磁数据,以了解局部和区域地形对电变形的影响。电流(无感)畸变是由电荷沿电导率梯度积聚引起的,在这两个区域都存在。它的影响可以通过分解阻抗张量来消除,假设电场和磁场都存在畸变。与大多数陆地数据不同,磁场畸变是解释海底数据所必需的。完全分解产生的电场畸变参数可以等效地解释为二维或三维畸变体,但这些解释不能单独使用MT观测进行区分。将这些数据与整体地质情况进行比较,以确定二维或三维变形的可能性更大。两个位置的电场畸变参数的行为与频率无关,正如电畸变所期望的那样。当用二维扭曲体来解释时,发现浅层走向与海岸线和大型海底特征(如洋中脊)的趋势平行。这表明塔斯曼海和胡安·德·富卡板块的扭曲主要是由电引起的,似乎是由区域性的、大规模的、二维的特征引起的,而不是由小规模的、三维的扭曲体引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Look at Galvanic Distortion in the Tasman Sea and the Juan de Fuca Plate
We have examined magnetotelluric (MT) data from the Juan de Fuca plate and the Tasman Sea to understand the influence of galvanic distortion by local and regional topography. Galvanic (non-inductive) distortion, caused by the build up of charge along conductivity gradients, is present in both regions. Its effects can be removed by decomposition of the impedance tensor assuming that both electric and magnetic field distortion are present. Unlike for most land-based data, magnetic field distortion is necessary to explain the seafloor data. Electric field distortion parameters resulting from the full decomposition can be interpreted equivalently in terms of either 2-D or 3-D distorting bodies, but these interpretations cannot be differentiated using MT observations alone. The data are compared to the overall geology to determine whether 2-D or 3-D distortion is more probable. The electric field distortion parameters in both locations behave appoximately frequency-independently, as expected for galvanic distortion. When interpreted in terms of 2-D distorting bodies, the superficial strikes were found to parallel the trends of coastlines and large-scale submarine features (e.g. mid-ocean ridges). This suggests that distortion both in the Tasman Sea and on the Juan de Fuca plate is dominantly galvanic and appears to be caused by regional, large-scale, 2-D features rather than small-scale, 3-D distorting bodies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信