基于端到端像素的身体感知和动作深度主动推理

Cansu Sancaktar, Pablo Lanillos
{"title":"基于端到端像素的身体感知和动作深度主动推理","authors":"Cansu Sancaktar, Pablo Lanillos","doi":"10.1109/ICDL-EpiRob48136.2020.9278105","DOIUrl":null,"url":null,"abstract":"We present a pixel-based deep active inference algorithm (PixelAI) inspired by human body perception and action. Our algorithm combines the free energy principle from neuroscience, rooted in variational inference, with deep convolutional decoders to scale the algorithm to directly deal with raw visual input and provide online adaptive inference. Our approach is validated by studying body perception and action in a simulated and a real Nao robot. Results show that our approach allows the robot to perform 1) dynamical body estimation of its arm using only monocular camera images and 2) autonomous reaching to “imagined” arm poses in visual space. This suggests that robot and human body perception and action can be efficiently solved by viewing both as an active inference problem guided by ongoing sensory input.","PeriodicalId":114948,"journal":{"name":"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"End-to-End Pixel-Based Deep Active Inference for Body Perception and Action\",\"authors\":\"Cansu Sancaktar, Pablo Lanillos\",\"doi\":\"10.1109/ICDL-EpiRob48136.2020.9278105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a pixel-based deep active inference algorithm (PixelAI) inspired by human body perception and action. Our algorithm combines the free energy principle from neuroscience, rooted in variational inference, with deep convolutional decoders to scale the algorithm to directly deal with raw visual input and provide online adaptive inference. Our approach is validated by studying body perception and action in a simulated and a real Nao robot. Results show that our approach allows the robot to perform 1) dynamical body estimation of its arm using only monocular camera images and 2) autonomous reaching to “imagined” arm poses in visual space. This suggests that robot and human body perception and action can be efficiently solved by viewing both as an active inference problem guided by ongoing sensory input.\",\"PeriodicalId\":114948,\"journal\":{\"name\":\"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL-EpiRob48136.2020.9278105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL-EpiRob48136.2020.9278105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

基于人体感知和动作的启发,提出了一种基于像素的深度主动推理算法(PixelAI)。我们的算法结合了神经科学的自由能原理,根植于变分推理,深度卷积解码器扩展算法,直接处理原始视觉输入并提供在线自适应推理。通过研究模拟和真实Nao机器人的身体感知和动作,验证了我们的方法。结果表明,我们的方法允许机器人仅使用单目相机图像对其手臂进行动态身体估计;2)自动到达视觉空间中的“想象”手臂姿势。这表明,机器人和人体的感知和行动可以通过将两者视为由持续的感官输入引导的主动推理问题来有效地解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-to-End Pixel-Based Deep Active Inference for Body Perception and Action
We present a pixel-based deep active inference algorithm (PixelAI) inspired by human body perception and action. Our algorithm combines the free energy principle from neuroscience, rooted in variational inference, with deep convolutional decoders to scale the algorithm to directly deal with raw visual input and provide online adaptive inference. Our approach is validated by studying body perception and action in a simulated and a real Nao robot. Results show that our approach allows the robot to perform 1) dynamical body estimation of its arm using only monocular camera images and 2) autonomous reaching to “imagined” arm poses in visual space. This suggests that robot and human body perception and action can be efficiently solved by viewing both as an active inference problem guided by ongoing sensory input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信