鲁棒ASR的倒谱子带归一化研究

Syu-Siang Wang, J. Hung, Yu Tsao
{"title":"鲁棒ASR的倒谱子带归一化研究","authors":"Syu-Siang Wang, J. Hung, Yu Tsao","doi":"10.1109/ISCSLP.2012.6423484","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a cepstral subband normalization (CSN) approach for robust speech recognition. The CSN approach first applies the discrete wavelet transform (DWT) to decompose the original cepstral feature sequence into low and high frequency band (LFB and HFB) parts. Then, CSN normalizes the LFB components and zeros out the HFB components. Finally, an inverse DWT is applied on LFB and HFB components to form the normalized cepstral features. When using the Haar functions as the DWT bases, the calculation of CSN can be processed efficiently with a 50% reduction on the amount of feature components. In addition, our experimental results on the Aurora-2 task show that CSN outperforms the conventional cepstral mean subtraction (CMS), cepstral mean and variance normalization (CMVN), and histogram equalization (HEQ). We also integrate CSN with advanced frontend (AFE) for feature extraction. Experimental results indicate that the integrated AFE+CSN achieves notable improvements over the original AFE. The simple calculation, compact in form, and effective noise robustness properties enable CSN to perform suitably for mobile applications.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A study on cepstral sub-band normalization for robust ASR\",\"authors\":\"Syu-Siang Wang, J. Hung, Yu Tsao\",\"doi\":\"10.1109/ISCSLP.2012.6423484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a cepstral subband normalization (CSN) approach for robust speech recognition. The CSN approach first applies the discrete wavelet transform (DWT) to decompose the original cepstral feature sequence into low and high frequency band (LFB and HFB) parts. Then, CSN normalizes the LFB components and zeros out the HFB components. Finally, an inverse DWT is applied on LFB and HFB components to form the normalized cepstral features. When using the Haar functions as the DWT bases, the calculation of CSN can be processed efficiently with a 50% reduction on the amount of feature components. In addition, our experimental results on the Aurora-2 task show that CSN outperforms the conventional cepstral mean subtraction (CMS), cepstral mean and variance normalization (CMVN), and histogram equalization (HEQ). We also integrate CSN with advanced frontend (AFE) for feature extraction. Experimental results indicate that the integrated AFE+CSN achieves notable improvements over the original AFE. The simple calculation, compact in form, and effective noise robustness properties enable CSN to perform suitably for mobile applications.\",\"PeriodicalId\":186099,\"journal\":{\"name\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP.2012.6423484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种用于鲁棒语音识别的倒谱子带归一化(CSN)方法。CSN方法首先利用离散小波变换(DWT)将原始倒谱特征序列分解为低频段和高频段(LFB和HFB)部分。然后,CSN将LFB分量归一化,并将HFB分量归零。最后,对LFB和HFB分量进行逆小波变换,形成归一化倒谱特征。当使用Haar函数作为DWT基时,CSN的计算可以有效地处理,特征分量的数量减少了50%。此外,我们在Aurora-2任务上的实验结果表明,CSN优于传统的倒谱均值减法(CMS)、倒谱均值方差归一化(CMVN)和直方图均衡化(HEQ)。我们还将CSN与高级前端(AFE)集成在一起,用于特征提取。实验结果表明,与原始AFE相比,集成AFE+CSN取得了显著的改进。简单的计算、紧凑的形式和有效的噪声鲁棒性使CSN能够适用于移动应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on cepstral sub-band normalization for robust ASR
In this paper, we propose a cepstral subband normalization (CSN) approach for robust speech recognition. The CSN approach first applies the discrete wavelet transform (DWT) to decompose the original cepstral feature sequence into low and high frequency band (LFB and HFB) parts. Then, CSN normalizes the LFB components and zeros out the HFB components. Finally, an inverse DWT is applied on LFB and HFB components to form the normalized cepstral features. When using the Haar functions as the DWT bases, the calculation of CSN can be processed efficiently with a 50% reduction on the amount of feature components. In addition, our experimental results on the Aurora-2 task show that CSN outperforms the conventional cepstral mean subtraction (CMS), cepstral mean and variance normalization (CMVN), and histogram equalization (HEQ). We also integrate CSN with advanced frontend (AFE) for feature extraction. Experimental results indicate that the integrated AFE+CSN achieves notable improvements over the original AFE. The simple calculation, compact in form, and effective noise robustness properties enable CSN to perform suitably for mobile applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信