可解释的指纹ROI分割使用蒙特卡罗Dropout

Indu Joshi, R. Kothari, Ayush Utkarsh, V. Kurmi, A. Dantcheva, Sumantra Dutta Roy, P. Kalra
{"title":"可解释的指纹ROI分割使用蒙特卡罗Dropout","authors":"Indu Joshi, R. Kothari, Ayush Utkarsh, V. Kurmi, A. Dantcheva, Sumantra Dutta Roy, P. Kalra","doi":"10.1109/WACVW52041.2021.00011","DOIUrl":null,"url":null,"abstract":"A fingerprint Region of Interest (ROI) segmentation module is one of the most crucial components in the fingerprint pre-processing pipeline. It separates the foreground finger-print and background region due to which feature extraction and matching is restricted to ROI instead of entire finger-print image. However, state-of-the-art segmentation algorithms act like a black box and do not indicate model confidence. In this direction, we propose an explainable finger-print ROI segmentation model which indicates the pixels on which the model is uncertain. Towards this, we benchmark four state-of-the-art models for semantic segmentation on fingerprint ROI segmentation. Furthermore, we demonstrate the effectiveness of model uncertainty as an attention mechanism to improve the segmentation performance of the best performing model. Experiments on publicly available Fingerprint Verification Challenge (FVC) databases show-case the effectiveness of the proposed model.","PeriodicalId":313062,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Explainable Fingerprint ROI Segmentation Using Monte Carlo Dropout\",\"authors\":\"Indu Joshi, R. Kothari, Ayush Utkarsh, V. Kurmi, A. Dantcheva, Sumantra Dutta Roy, P. Kalra\",\"doi\":\"10.1109/WACVW52041.2021.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fingerprint Region of Interest (ROI) segmentation module is one of the most crucial components in the fingerprint pre-processing pipeline. It separates the foreground finger-print and background region due to which feature extraction and matching is restricted to ROI instead of entire finger-print image. However, state-of-the-art segmentation algorithms act like a black box and do not indicate model confidence. In this direction, we propose an explainable finger-print ROI segmentation model which indicates the pixels on which the model is uncertain. Towards this, we benchmark four state-of-the-art models for semantic segmentation on fingerprint ROI segmentation. Furthermore, we demonstrate the effectiveness of model uncertainty as an attention mechanism to improve the segmentation performance of the best performing model. Experiments on publicly available Fingerprint Verification Challenge (FVC) databases show-case the effectiveness of the proposed model.\",\"PeriodicalId\":313062,\"journal\":{\"name\":\"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW52041.2021.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW52041.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

指纹感兴趣区域分割模块是指纹预处理流程中最关键的组成部分之一。该方法将前景指纹和背景区域分离开来,使得特征提取和匹配局限于感兴趣区域,而不是整个指纹图像。然而,最先进的分割算法就像一个黑匣子,并不表明模型的置信度。在这个方向上,我们提出了一个可解释的指纹ROI分割模型,该模型表明模型不确定的像素。为此,我们在指纹ROI分割上对四种最先进的语义分割模型进行了基准测试。此外,我们证明了模型不确定性作为一种关注机制的有效性,可以提高表现最好的模型的分割性能。在公开可用的指纹验证挑战(FVC)数据库上的实验证明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable Fingerprint ROI Segmentation Using Monte Carlo Dropout
A fingerprint Region of Interest (ROI) segmentation module is one of the most crucial components in the fingerprint pre-processing pipeline. It separates the foreground finger-print and background region due to which feature extraction and matching is restricted to ROI instead of entire finger-print image. However, state-of-the-art segmentation algorithms act like a black box and do not indicate model confidence. In this direction, we propose an explainable finger-print ROI segmentation model which indicates the pixels on which the model is uncertain. Towards this, we benchmark four state-of-the-art models for semantic segmentation on fingerprint ROI segmentation. Furthermore, we demonstrate the effectiveness of model uncertainty as an attention mechanism to improve the segmentation performance of the best performing model. Experiments on publicly available Fingerprint Verification Challenge (FVC) databases show-case the effectiveness of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信