{"title":"智慧城市服务的物联网:生命周期方法","authors":"A. Hefnawy, Abdelaziz Bouras, C. Cherifi","doi":"10.1145/2896387.2896440","DOIUrl":null,"url":null,"abstract":"\"Internet of Things\" (IoT) and \"Smart City\" are widely recognized to address the complexity of modern city operation. Concentration of population, scarcity of resources and environmental concerns are the main challenges that face city operators, and make ordinary service provisioning less efficient. In city environment, IoT sensors can be sources of real-time data; and, IoT actuators can execute real-time actions in the physical domain. IoT systems range from domain-specific to cross-sectoral systems where valuable data/ information flow across interconnected complex systems. Yet, to integrate domain-specific IoT systems into the complete vision of Smart City, as a System of Systems (SoS), there is a need to address heterogeneity of data sources, diversity of application domains and the big number of stakeholders across different phases of lifecycle. This paper suggests Service Lifecycle Management (SLM) concepts and Lifecycle Modeling Language (LML) to analyze, plan, specify, design, build and maintain IoT-enabled Smart City Service Systems.","PeriodicalId":342210,"journal":{"name":"Proceedings of the International Conference on Internet of things and Cloud Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"IoT for Smart City Services: Lifecycle Approach\",\"authors\":\"A. Hefnawy, Abdelaziz Bouras, C. Cherifi\",\"doi\":\"10.1145/2896387.2896440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Internet of Things\\\" (IoT) and \\\"Smart City\\\" are widely recognized to address the complexity of modern city operation. Concentration of population, scarcity of resources and environmental concerns are the main challenges that face city operators, and make ordinary service provisioning less efficient. In city environment, IoT sensors can be sources of real-time data; and, IoT actuators can execute real-time actions in the physical domain. IoT systems range from domain-specific to cross-sectoral systems where valuable data/ information flow across interconnected complex systems. Yet, to integrate domain-specific IoT systems into the complete vision of Smart City, as a System of Systems (SoS), there is a need to address heterogeneity of data sources, diversity of application domains and the big number of stakeholders across different phases of lifecycle. This paper suggests Service Lifecycle Management (SLM) concepts and Lifecycle Modeling Language (LML) to analyze, plan, specify, design, build and maintain IoT-enabled Smart City Service Systems.\",\"PeriodicalId\":342210,\"journal\":{\"name\":\"Proceedings of the International Conference on Internet of things and Cloud Computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Internet of things and Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2896387.2896440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Internet of things and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2896387.2896440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
"Internet of Things" (IoT) and "Smart City" are widely recognized to address the complexity of modern city operation. Concentration of population, scarcity of resources and environmental concerns are the main challenges that face city operators, and make ordinary service provisioning less efficient. In city environment, IoT sensors can be sources of real-time data; and, IoT actuators can execute real-time actions in the physical domain. IoT systems range from domain-specific to cross-sectoral systems where valuable data/ information flow across interconnected complex systems. Yet, to integrate domain-specific IoT systems into the complete vision of Smart City, as a System of Systems (SoS), there is a need to address heterogeneity of data sources, diversity of application domains and the big number of stakeholders across different phases of lifecycle. This paper suggests Service Lifecycle Management (SLM) concepts and Lifecycle Modeling Language (LML) to analyze, plan, specify, design, build and maintain IoT-enabled Smart City Service Systems.