带跳跃的倒向随机微分方程的Lp解

Song Yao
{"title":"带跳跃的倒向随机微分方程的Lp解","authors":"Song Yao","doi":"10.2139/ssrn.2806567","DOIUrl":null,"url":null,"abstract":"Abstract Given p ∈ ( 1 , 2 ) , we study L p solutions of a multi-dimensional backward stochastic differential equation with jumps (BSDEJ) whose generator may not be Lipschitz continuous in ( y , z ) -variables. We show that such a BSDEJ with p -integrable terminal data admits a unique L p solution by approximating the monotonic generator by a sequence of Lipschitz generators via convolution with mollifiers and using a stability result.","PeriodicalId":103032,"journal":{"name":"OPER: Analytical (Topic)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Lp Solutions of Backward Stochastic Differential Equations with Jumps\",\"authors\":\"Song Yao\",\"doi\":\"10.2139/ssrn.2806567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given p ∈ ( 1 , 2 ) , we study L p solutions of a multi-dimensional backward stochastic differential equation with jumps (BSDEJ) whose generator may not be Lipschitz continuous in ( y , z ) -variables. We show that such a BSDEJ with p -integrable terminal data admits a unique L p solution by approximating the monotonic generator by a sequence of Lipschitz generators via convolution with mollifiers and using a stability result.\",\"PeriodicalId\":103032,\"journal\":{\"name\":\"OPER: Analytical (Topic)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OPER: Analytical (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2806567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OPER: Analytical (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2806567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

摘要给定p∈(1,2),研究了一类具有跳跃的多维后向随机微分方程(BSDEJ)的L p解,该方程的生成器在(y, z) -变量中可能不是Lipschitz连续的。我们通过与mollifiers的卷积,用一系列Lipschitz生成器逼近单调发生器,并使用稳定性结果证明了具有p可积末端数据的BSDEJ具有唯一的L p解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lp Solutions of Backward Stochastic Differential Equations with Jumps
Abstract Given p ∈ ( 1 , 2 ) , we study L p solutions of a multi-dimensional backward stochastic differential equation with jumps (BSDEJ) whose generator may not be Lipschitz continuous in ( y , z ) -variables. We show that such a BSDEJ with p -integrable terminal data admits a unique L p solution by approximating the monotonic generator by a sequence of Lipschitz generators via convolution with mollifiers and using a stability result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信