{"title":"带跳跃的倒向随机微分方程的Lp解","authors":"Song Yao","doi":"10.2139/ssrn.2806567","DOIUrl":null,"url":null,"abstract":"Abstract Given p ∈ ( 1 , 2 ) , we study L p solutions of a multi-dimensional backward stochastic differential equation with jumps (BSDEJ) whose generator may not be Lipschitz continuous in ( y , z ) -variables. We show that such a BSDEJ with p -integrable terminal data admits a unique L p solution by approximating the monotonic generator by a sequence of Lipschitz generators via convolution with mollifiers and using a stability result.","PeriodicalId":103032,"journal":{"name":"OPER: Analytical (Topic)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Lp Solutions of Backward Stochastic Differential Equations with Jumps\",\"authors\":\"Song Yao\",\"doi\":\"10.2139/ssrn.2806567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Given p ∈ ( 1 , 2 ) , we study L p solutions of a multi-dimensional backward stochastic differential equation with jumps (BSDEJ) whose generator may not be Lipschitz continuous in ( y , z ) -variables. We show that such a BSDEJ with p -integrable terminal data admits a unique L p solution by approximating the monotonic generator by a sequence of Lipschitz generators via convolution with mollifiers and using a stability result.\",\"PeriodicalId\":103032,\"journal\":{\"name\":\"OPER: Analytical (Topic)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OPER: Analytical (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2806567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OPER: Analytical (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2806567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lp Solutions of Backward Stochastic Differential Equations with Jumps
Abstract Given p ∈ ( 1 , 2 ) , we study L p solutions of a multi-dimensional backward stochastic differential equation with jumps (BSDEJ) whose generator may not be Lipschitz continuous in ( y , z ) -variables. We show that such a BSDEJ with p -integrable terminal data admits a unique L p solution by approximating the monotonic generator by a sequence of Lipschitz generators via convolution with mollifiers and using a stability result.