使用心肺和运动信号预测早产儿个体化呼吸暂停

J. Williamson, D. Bliss, David W. Browne, P. Indic, E. Bloch-Salisbury, D. Paydarfar
{"title":"使用心肺和运动信号预测早产儿个体化呼吸暂停","authors":"J. Williamson, D. Bliss, David W. Browne, P. Indic, E. Bloch-Salisbury, D. Paydarfar","doi":"10.1109/BSN.2013.6575523","DOIUrl":null,"url":null,"abstract":"Apnea of prematurity is a common developmental disorder in preterm infants that is implicated in a number of acute and long-term complications. Therapeutic stochastic resonance (TSR) is a noninvasive preventative intervention for stabilizing breathing patterns and reducing the incidence of apnea and hypoxia. Because the stabilizing effect of TSR lags its initiation, it can be used most effectively if it is linked to a system for apnea prediction. We present a real-time algorithm for generating apnea predictions based on cardio-respiratory and movement features extracted from multiple physiological sensors. The features are used to create patient-specific statistical models of apnea precursors. The state parameters generated by these models are evaluated over time to form apnea predictions. The algorithms predictions are evaluated using a short, 5.5 minute prediction horizon. The algorithm obtains highly accurate predictions, with statistical significance obtained on five out of the six patients that it is evaluated on.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Individualized apnea prediction in preterm infants using cardio-respiratory and movement signals\",\"authors\":\"J. Williamson, D. Bliss, David W. Browne, P. Indic, E. Bloch-Salisbury, D. Paydarfar\",\"doi\":\"10.1109/BSN.2013.6575523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Apnea of prematurity is a common developmental disorder in preterm infants that is implicated in a number of acute and long-term complications. Therapeutic stochastic resonance (TSR) is a noninvasive preventative intervention for stabilizing breathing patterns and reducing the incidence of apnea and hypoxia. Because the stabilizing effect of TSR lags its initiation, it can be used most effectively if it is linked to a system for apnea prediction. We present a real-time algorithm for generating apnea predictions based on cardio-respiratory and movement features extracted from multiple physiological sensors. The features are used to create patient-specific statistical models of apnea precursors. The state parameters generated by these models are evaluated over time to form apnea predictions. The algorithms predictions are evaluated using a short, 5.5 minute prediction horizon. The algorithm obtains highly accurate predictions, with statistical significance obtained on five out of the six patients that it is evaluated on.\",\"PeriodicalId\":138242,\"journal\":{\"name\":\"2013 IEEE International Conference on Body Sensor Networks\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2013.6575523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

早产儿呼吸暂停是一种常见的早产儿发育障碍,涉及许多急性和长期并发症。治疗性随机共振(TSR)是一种稳定呼吸模式和减少呼吸暂停和缺氧发生率的无创预防性干预。由于TSR的稳定作用滞后于它的启动,如果它与呼吸暂停预测系统相关联,它可以最有效地使用。我们提出了一种实时算法,用于基于从多个生理传感器提取的心肺和运动特征生成呼吸暂停预测。这些特征用于创建患者特定的呼吸暂停前体的统计模型。这些模型产生的状态参数随着时间的推移进行评估,以形成呼吸暂停预测。算法预测使用短的,5.5分钟的预测范围进行评估。该算法获得了高度准确的预测,在评估的6名患者中,有5名患者获得了统计显著性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Individualized apnea prediction in preterm infants using cardio-respiratory and movement signals
Apnea of prematurity is a common developmental disorder in preterm infants that is implicated in a number of acute and long-term complications. Therapeutic stochastic resonance (TSR) is a noninvasive preventative intervention for stabilizing breathing patterns and reducing the incidence of apnea and hypoxia. Because the stabilizing effect of TSR lags its initiation, it can be used most effectively if it is linked to a system for apnea prediction. We present a real-time algorithm for generating apnea predictions based on cardio-respiratory and movement features extracted from multiple physiological sensors. The features are used to create patient-specific statistical models of apnea precursors. The state parameters generated by these models are evaluated over time to form apnea predictions. The algorithms predictions are evaluated using a short, 5.5 minute prediction horizon. The algorithm obtains highly accurate predictions, with statistical significance obtained on five out of the six patients that it is evaluated on.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信