{"title":"孟古纳坎模型阈值广义自回归条件异方差","authors":"Dadan Kusnandar Nurfitri Imro’ah Ervina","doi":"10.26418/bbimst.v9i1.38588","DOIUrl":null,"url":null,"abstract":"Model Threshold Generalized Autoregressive Conditional Heteroscedasticity (TGARCH) merupakan model yang digunakan untuk memodelkan volatilitas yang memiliki efek asimetris. Tujuan penelitian ini adalah memodelkan dan meramalkan volatilitas IHSG menggunakan model TGARCH untuk sepuluh periode ke depan. Data yang digunakan adalah data return IHSG penutupan mingguan dari tanggal 8 Februari 2009 sampai dengan 10 Februari 2019. Penelitian ini diawali dengan pembentukan model Box Jenkins. Residual model Box Jenkins terbaik digunakan untuk mendeteksi heteroskedastisitas menggunakan uji ARCH-LM. Data residual yang memiliki heteroskedastisitas dimodelkan ke dalam model GARCH. Residual model GARCH dan residual model Box Jenkins digunakan untuk memeriksa pengaruh asimetris, yaitu dengan melakukan korelasi silang pada kedua residual model tersebut. Berdasarkan hasil korelasi silang yang dilakukan didapatkan adanya pengaruh asimetris terhadap volatilitas, sehingga digunakan model TGARCH untuk mengatasinya. Model TGARCH terbaik dalam penelitian ini adalah TGARCH(1,1) berdasarkan nilai Akaike Information Criterion (AIC) dan Schwarz Criterion (SC) terkecil. Model TGARCH(1,1) digunakan untuk meramalkan volatilitas IHSG. Hasil peramalan volatilitas yang diperoleh untuk sepuluh periode ke depan mengalami peningkatan sebesar 0,000015 sampai dengan 0,000029.Kata Kunci: Asimetris, GARCH, TGARCH","PeriodicalId":265420,"journal":{"name":"Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERAMALAN VOLATILITAS SAHAM MENGGUNAKAN MODEL THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY\",\"authors\":\"Dadan Kusnandar Nurfitri Imro’ah Ervina\",\"doi\":\"10.26418/bbimst.v9i1.38588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model Threshold Generalized Autoregressive Conditional Heteroscedasticity (TGARCH) merupakan model yang digunakan untuk memodelkan volatilitas yang memiliki efek asimetris. Tujuan penelitian ini adalah memodelkan dan meramalkan volatilitas IHSG menggunakan model TGARCH untuk sepuluh periode ke depan. Data yang digunakan adalah data return IHSG penutupan mingguan dari tanggal 8 Februari 2009 sampai dengan 10 Februari 2019. Penelitian ini diawali dengan pembentukan model Box Jenkins. Residual model Box Jenkins terbaik digunakan untuk mendeteksi heteroskedastisitas menggunakan uji ARCH-LM. Data residual yang memiliki heteroskedastisitas dimodelkan ke dalam model GARCH. Residual model GARCH dan residual model Box Jenkins digunakan untuk memeriksa pengaruh asimetris, yaitu dengan melakukan korelasi silang pada kedua residual model tersebut. Berdasarkan hasil korelasi silang yang dilakukan didapatkan adanya pengaruh asimetris terhadap volatilitas, sehingga digunakan model TGARCH untuk mengatasinya. Model TGARCH terbaik dalam penelitian ini adalah TGARCH(1,1) berdasarkan nilai Akaike Information Criterion (AIC) dan Schwarz Criterion (SC) terkecil. Model TGARCH(1,1) digunakan untuk meramalkan volatilitas IHSG. Hasil peramalan volatilitas yang diperoleh untuk sepuluh periode ke depan mengalami peningkatan sebesar 0,000015 sampai dengan 0,000029.Kata Kunci: Asimetris, GARCH, TGARCH\",\"PeriodicalId\":265420,\"journal\":{\"name\":\"Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/bbimst.v9i1.38588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/bbimst.v9i1.38588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PERAMALAN VOLATILITAS SAHAM MENGGUNAKAN MODEL THRESHOLD GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY
Model Threshold Generalized Autoregressive Conditional Heteroscedasticity (TGARCH) merupakan model yang digunakan untuk memodelkan volatilitas yang memiliki efek asimetris. Tujuan penelitian ini adalah memodelkan dan meramalkan volatilitas IHSG menggunakan model TGARCH untuk sepuluh periode ke depan. Data yang digunakan adalah data return IHSG penutupan mingguan dari tanggal 8 Februari 2009 sampai dengan 10 Februari 2019. Penelitian ini diawali dengan pembentukan model Box Jenkins. Residual model Box Jenkins terbaik digunakan untuk mendeteksi heteroskedastisitas menggunakan uji ARCH-LM. Data residual yang memiliki heteroskedastisitas dimodelkan ke dalam model GARCH. Residual model GARCH dan residual model Box Jenkins digunakan untuk memeriksa pengaruh asimetris, yaitu dengan melakukan korelasi silang pada kedua residual model tersebut. Berdasarkan hasil korelasi silang yang dilakukan didapatkan adanya pengaruh asimetris terhadap volatilitas, sehingga digunakan model TGARCH untuk mengatasinya. Model TGARCH terbaik dalam penelitian ini adalah TGARCH(1,1) berdasarkan nilai Akaike Information Criterion (AIC) dan Schwarz Criterion (SC) terkecil. Model TGARCH(1,1) digunakan untuk meramalkan volatilitas IHSG. Hasil peramalan volatilitas yang diperoleh untuk sepuluh periode ke depan mengalami peningkatan sebesar 0,000015 sampai dengan 0,000029.Kata Kunci: Asimetris, GARCH, TGARCH