面向IEEE UV 2022“视觉与藻类相遇”目标检测挑战的有效微藻目标检测解决方案

Yunchen Zhang, Wei Zeng, Fan Yang
{"title":"面向IEEE UV 2022“视觉与藻类相遇”目标检测挑战的有效微藻目标检测解决方案","authors":"Yunchen Zhang, Wei Zeng, Fan Yang","doi":"10.1109/UV56588.2022.10185487","DOIUrl":null,"url":null,"abstract":"This technical report introduces our solution for microalgae object detection in IEEE UV 2022 Vision Meets Alage Object Detection Challenge. The purpose of this challenge is to employ computer vision to more effectively analyze population change in ocean microalgae species. Therefore, we performed a comprehensive analysis of the distribution of the microalgae dataset and designed a customized training strategy for the task. In order to better identify the categories and coordinates of microalgae in microscopic images, we propose CBSwin-Cascade RCNN++ as a strong baseline for microalgae detection. Our final submission the results, which achieves 56.13 in mAP 0.5:0.95 on a single model, and obtains 57.09 in mAP 0.5:0.95 with the ensembled models.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Effective Microalgae Object Detection Solutions to IEEE UV 2022 “Vision Meets Alage” Object Detection Challenge\",\"authors\":\"Yunchen Zhang, Wei Zeng, Fan Yang\",\"doi\":\"10.1109/UV56588.2022.10185487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This technical report introduces our solution for microalgae object detection in IEEE UV 2022 Vision Meets Alage Object Detection Challenge. The purpose of this challenge is to employ computer vision to more effectively analyze population change in ocean microalgae species. Therefore, we performed a comprehensive analysis of the distribution of the microalgae dataset and designed a customized training strategy for the task. In order to better identify the categories and coordinates of microalgae in microscopic images, we propose CBSwin-Cascade RCNN++ as a strong baseline for microalgae detection. Our final submission the results, which achieves 56.13 in mAP 0.5:0.95 on a single model, and obtains 57.09 in mAP 0.5:0.95 with the ensembled models.\",\"PeriodicalId\":211011,\"journal\":{\"name\":\"2022 6th International Conference on Universal Village (UV)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Universal Village (UV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UV56588.2022.10185487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本技术报告介绍了我们在IEEE UV 2022视觉与藻类物体检测挑战赛中微藻物体检测的解决方案。这项挑战的目的是利用计算机视觉更有效地分析海洋微藻物种的种群变化。因此,我们对微藻数据集的分布进行了全面分析,并针对该任务设计了定制化的训练策略。为了更好地识别微藻在显微图像中的类别和坐标,我们提出了CBSwin-Cascade RCNN++作为微藻检测的强基线。我们最终提交了结果,在单个模型上mAP 0.5:0.95得到56.13,在集成模型上mAP 0.5:0.95得到57.09。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Effective Microalgae Object Detection Solutions to IEEE UV 2022 “Vision Meets Alage” Object Detection Challenge
This technical report introduces our solution for microalgae object detection in IEEE UV 2022 Vision Meets Alage Object Detection Challenge. The purpose of this challenge is to employ computer vision to more effectively analyze population change in ocean microalgae species. Therefore, we performed a comprehensive analysis of the distribution of the microalgae dataset and designed a customized training strategy for the task. In order to better identify the categories and coordinates of microalgae in microscopic images, we propose CBSwin-Cascade RCNN++ as a strong baseline for microalgae detection. Our final submission the results, which achieves 56.13 in mAP 0.5:0.95 on a single model, and obtains 57.09 in mAP 0.5:0.95 with the ensembled models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信