对抗无政府状态的算法:理解非真实机制

Paul Dütting, Thomas Kesselheim
{"title":"对抗无政府状态的算法:理解非真实机制","authors":"Paul Dütting, Thomas Kesselheim","doi":"10.1145/2764468.2764507","DOIUrl":null,"url":null,"abstract":"The algorithmic requirements for dominant strategy incentive compatibility, or truthfulness, are well understood. Is there a similar characterization of algorithms that when combined with a suitable payment rule yield near-optimal welfare in all equilibria? We address this question by providing a tight characterization of a (possibly randomized) mechanism's Price of Anarchy provable via smoothness, for single-parameter settings. The characterization assigns a unique value to each allocation algorithm; this value provides an upper and a matching lower bound on the Price of Anarchy of a derived mechanism provable via smoothness. The characterization also applies to the sequential or simultaneous composition of single-parameter mechanisms. Importantly, the factor that we identify is typically not in one-to-one correspondence to the approximation guarantee of the algorithm. Rather, it is usually the product of the approximation guarantee and the degree to which the mechanism is loser independent. We apply our characterization to show the optimality of greedy mechanisms for single-minded combinatorial auctions, whether these mechanisms are polynomial-time computable or not. We also use it to establish the optimality of a non-greedy, randomized mechanism for independent set in interval graphs and show that it is strictly better than any other deterministic mechanism.","PeriodicalId":376992,"journal":{"name":"Proceedings of the Sixteenth ACM Conference on Economics and Computation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Algorithms against Anarchy: Understanding Non-Truthful Mechanisms\",\"authors\":\"Paul Dütting, Thomas Kesselheim\",\"doi\":\"10.1145/2764468.2764507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The algorithmic requirements for dominant strategy incentive compatibility, or truthfulness, are well understood. Is there a similar characterization of algorithms that when combined with a suitable payment rule yield near-optimal welfare in all equilibria? We address this question by providing a tight characterization of a (possibly randomized) mechanism's Price of Anarchy provable via smoothness, for single-parameter settings. The characterization assigns a unique value to each allocation algorithm; this value provides an upper and a matching lower bound on the Price of Anarchy of a derived mechanism provable via smoothness. The characterization also applies to the sequential or simultaneous composition of single-parameter mechanisms. Importantly, the factor that we identify is typically not in one-to-one correspondence to the approximation guarantee of the algorithm. Rather, it is usually the product of the approximation guarantee and the degree to which the mechanism is loser independent. We apply our characterization to show the optimality of greedy mechanisms for single-minded combinatorial auctions, whether these mechanisms are polynomial-time computable or not. We also use it to establish the optimality of a non-greedy, randomized mechanism for independent set in interval graphs and show that it is strictly better than any other deterministic mechanism.\",\"PeriodicalId\":376992,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM Conference on Economics and Computation\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM Conference on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2764468.2764507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2764468.2764507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

对优势策略激励兼容性或真实性的算法要求已经很好地理解了。是否存在类似的算法特征,当与合适的支付规则相结合时,在所有均衡中产生接近最优的福利?为了解决这个问题,我们提供了一个(可能是随机的)机制的无政府状态价格的严格特征,可以通过平滑性来证明,对于单参数设置。所述特征为每个分配算法分配一个唯一的值;该值提供了可通过平滑性证明的派生机制的无政府价格的上界和匹配的下界。该表征也适用于单参数机构的顺序或同时组成。重要的是,我们识别的因素通常与算法的近似保证不是一对一对应的。相反,它通常是近似保证和机制与输家无关程度的产物。我们应用我们的描述来证明贪心机制对于单一组合拍卖的最优性,无论这些机制是否多项式时间可计算。我们还用它建立了区间图中独立集的非贪婪随机机制的最优性,并证明了它严格优于任何其他确定性机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms against Anarchy: Understanding Non-Truthful Mechanisms
The algorithmic requirements for dominant strategy incentive compatibility, or truthfulness, are well understood. Is there a similar characterization of algorithms that when combined with a suitable payment rule yield near-optimal welfare in all equilibria? We address this question by providing a tight characterization of a (possibly randomized) mechanism's Price of Anarchy provable via smoothness, for single-parameter settings. The characterization assigns a unique value to each allocation algorithm; this value provides an upper and a matching lower bound on the Price of Anarchy of a derived mechanism provable via smoothness. The characterization also applies to the sequential or simultaneous composition of single-parameter mechanisms. Importantly, the factor that we identify is typically not in one-to-one correspondence to the approximation guarantee of the algorithm. Rather, it is usually the product of the approximation guarantee and the degree to which the mechanism is loser independent. We apply our characterization to show the optimality of greedy mechanisms for single-minded combinatorial auctions, whether these mechanisms are polynomial-time computable or not. We also use it to establish the optimality of a non-greedy, randomized mechanism for independent set in interval graphs and show that it is strictly better than any other deterministic mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信