{"title":"Notes on searching in multidimensional monotone arrays","authors":"A. Aggarwal, James K. Park","doi":"10.1109/SFCS.1988.21966","DOIUrl":null,"url":null,"abstract":"A two-dimensional array A=(a/sub i,j/) is called monotone if the maximum entry in its ith row lies below or to the right of the maximum entry in its (i- 1)-st row. An array A is called totally monotone if every 2*2 subarray (i.e., every 2*2 minor) is monotone. The notion of two-dimensional totally monotone arrays is generalized to multidimensional arrays, and a wide variety of problems are exhibited involving computational geometry, dynamic programming, VLSI river routing, and finding certain kinds of shortest paths that can be solved efficiently by finding maxima in totally monotone arrays.<<ETX>>","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"170","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Notes on searching in multidimensional monotone arrays
A two-dimensional array A=(a/sub i,j/) is called monotone if the maximum entry in its ith row lies below or to the right of the maximum entry in its (i- 1)-st row. An array A is called totally monotone if every 2*2 subarray (i.e., every 2*2 minor) is monotone. The notion of two-dimensional totally monotone arrays is generalized to multidimensional arrays, and a wide variety of problems are exhibited involving computational geometry, dynamic programming, VLSI river routing, and finding certain kinds of shortest paths that can be solved efficiently by finding maxima in totally monotone arrays.<>