A. Aggarwal, James K. Park
{"title":"Notes on searching in multidimensional monotone arrays","authors":"A. Aggarwal, James K. Park","doi":"10.1109/SFCS.1988.21966","DOIUrl":null,"url":null,"abstract":"A two-dimensional array A=(a/sub i,j/) is called monotone if the maximum entry in its ith row lies below or to the right of the maximum entry in its (i- 1)-st row. An array A is called totally monotone if every 2*2 subarray (i.e., every 2*2 minor) is monotone. The notion of two-dimensional totally monotone arrays is generalized to multidimensional arrays, and a wide variety of problems are exhibited involving computational geometry, dynamic programming, VLSI river routing, and finding certain kinds of shortest paths that can be solved efficiently by finding maxima in totally monotone arrays.<<ETX>>","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"170","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 170

摘要

如果二维数组A=(A /下标i,j/)的第i行最大项位于第i- 1行最大项的下方或右侧,则称为单调数组。如果每个2*2子数组(即每个2*2次数组)都是单调的,则称数组A为完全单调的。二维全单调数组的概念被推广到多维数组,并展示了各种各样的问题,包括计算几何,动态规划,超大规模集成电路河路由,以及寻找某些类型的最短路径,这些最短路径可以通过在全单调数组中寻找最大值来有效地解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on searching in multidimensional monotone arrays
A two-dimensional array A=(a/sub i,j/) is called monotone if the maximum entry in its ith row lies below or to the right of the maximum entry in its (i- 1)-st row. An array A is called totally monotone if every 2*2 subarray (i.e., every 2*2 minor) is monotone. The notion of two-dimensional totally monotone arrays is generalized to multidimensional arrays, and a wide variety of problems are exhibited involving computational geometry, dynamic programming, VLSI river routing, and finding certain kinds of shortest paths that can be solved efficiently by finding maxima in totally monotone arrays.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信