脊凸多项式的数目

Eman F. Mohomme
{"title":"脊凸多项式的数目","authors":"Eman F. Mohomme","doi":"10.31642/jokmc/2018/060303","DOIUrl":null,"url":null,"abstract":"— : In his paper we describe a restricted class of polyominoes called spinal-convex polyominoes. Spinal-convex polyominoes created by two columns such that column 1 (respectively, column2) with at most two set columns sequence of adjacent ominoes and column 2 (respectively, column1) with at least one set column sequence of adjacent ominoes. In addition, this study reveals new combinatorial method of enumerating spinal-convex polyominoes .","PeriodicalId":115908,"journal":{"name":"Journal of Kufa for Mathematics and Computer","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Number of Spinal-Convex Polyominoes\",\"authors\":\"Eman F. Mohomme\",\"doi\":\"10.31642/jokmc/2018/060303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— : In his paper we describe a restricted class of polyominoes called spinal-convex polyominoes. Spinal-convex polyominoes created by two columns such that column 1 (respectively, column2) with at most two set columns sequence of adjacent ominoes and column 2 (respectively, column1) with at least one set column sequence of adjacent ominoes. In addition, this study reveals new combinatorial method of enumerating spinal-convex polyominoes .\",\"PeriodicalId\":115908,\"journal\":{\"name\":\"Journal of Kufa for Mathematics and Computer\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Kufa for Mathematics and Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31642/jokmc/2018/060303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Kufa for Mathematics and Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31642/jokmc/2018/060303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在他的论文中,我们描述了一类受限的多多项式,称为脊凸多多项式。由两列创建的脊凸多角,使得列1(分别为column2)具有最多两个相邻的集合列序列,列2(分别为column1)具有至少一个相邻的集合列序列。此外,本研究还揭示了一种新的枚举脊凸多多项式的组合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Number of Spinal-Convex Polyominoes
— : In his paper we describe a restricted class of polyominoes called spinal-convex polyominoes. Spinal-convex polyominoes created by two columns such that column 1 (respectively, column2) with at most two set columns sequence of adjacent ominoes and column 2 (respectively, column1) with at least one set column sequence of adjacent ominoes. In addition, this study reveals new combinatorial method of enumerating spinal-convex polyominoes .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信