提出了一种基于最优ARMA的状态估计测量补偿模型

N. Khan, Syed Abuzar Bacha
{"title":"提出了一种基于最优ARMA的状态估计测量补偿模型","authors":"N. Khan, Syed Abuzar Bacha","doi":"10.1109/FIT.2017.00060","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to improve state estimation in the event of data loss by augmenting a novel Moving Average Autoregressive-based artificial measurement vector with Kalman filtering. The proposed technique replaces the existing Autoregressive-series based model embedded in the linear prediction techniques through Moving Average Autoregressive-based model. The Autoregressive scheme needs only one type of linear prediction coefficient to be tracked, while the proposed scheme computes two parameters at each recursion. Since Autoregressive Moving Average technique possesses more information, hence it efficiently predicts the future values of a signal. This value is placed as an alternative in the structure (or steps) involved in standard process of state estimations. The ultimate consequences of this extra computations involve more computational efforts. A standard mass-spring damper case study has been provided to show some aspects of the existing and proposed techniques.","PeriodicalId":107273,"journal":{"name":"2017 International Conference on Frontiers of Information Technology (FIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Proposing Optimal ARMA Based Model for Measurement Compensation in the State Estimation\",\"authors\":\"N. Khan, Syed Abuzar Bacha\",\"doi\":\"10.1109/FIT.2017.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to improve state estimation in the event of data loss by augmenting a novel Moving Average Autoregressive-based artificial measurement vector with Kalman filtering. The proposed technique replaces the existing Autoregressive-series based model embedded in the linear prediction techniques through Moving Average Autoregressive-based model. The Autoregressive scheme needs only one type of linear prediction coefficient to be tracked, while the proposed scheme computes two parameters at each recursion. Since Autoregressive Moving Average technique possesses more information, hence it efficiently predicts the future values of a signal. This value is placed as an alternative in the structure (or steps) involved in standard process of state estimations. The ultimate consequences of this extra computations involve more computational efforts. A standard mass-spring damper case study has been provided to show some aspects of the existing and proposed techniques.\",\"PeriodicalId\":107273,\"journal\":{\"name\":\"2017 International Conference on Frontiers of Information Technology (FIT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Frontiers of Information Technology (FIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIT.2017.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Frontiers of Information Technology (FIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2017.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是通过增加一种新的基于移动平均自回归的人工测量向量和卡尔曼滤波来改善数据丢失情况下的状态估计。该技术通过基于移动平均的自回归模型取代了现有的基于自回归序列的嵌入线性预测技术模型。自回归方案只需要跟踪一种线性预测系数,而本文提出的方案在每次递归时计算两个参数。由于自回归移动平均技术拥有更多的信息,因此它能有效地预测信号的未来值。该值被放置在状态估计的标准过程中所涉及的结构(或步骤)中作为备选项。这种额外计算的最终结果涉及更多的计算工作。提供了一个标准质量-弹簧阻尼器的案例研究,以展示现有和拟议技术的某些方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposing Optimal ARMA Based Model for Measurement Compensation in the State Estimation
The purpose of this paper is to improve state estimation in the event of data loss by augmenting a novel Moving Average Autoregressive-based artificial measurement vector with Kalman filtering. The proposed technique replaces the existing Autoregressive-series based model embedded in the linear prediction techniques through Moving Average Autoregressive-based model. The Autoregressive scheme needs only one type of linear prediction coefficient to be tracked, while the proposed scheme computes two parameters at each recursion. Since Autoregressive Moving Average technique possesses more information, hence it efficiently predicts the future values of a signal. This value is placed as an alternative in the structure (or steps) involved in standard process of state estimations. The ultimate consequences of this extra computations involve more computational efforts. A standard mass-spring damper case study has been provided to show some aspects of the existing and proposed techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信