分析预应力对选择柔顺机制的影响:一个案例研究

K. Mauser, Jan Friese, A. Hasse
{"title":"分析预应力对选择柔顺机制的影响:一个案例研究","authors":"K. Mauser, Jan Friese, A. Hasse","doi":"10.1115/detc2019-97799","DOIUrl":null,"url":null,"abstract":"\n Once it is designed, the stiffness of a compliant mechanism is not intended to be changed in order to adapt to special operation conditions. Nevertheless, various operation tasks e.g. mechanical grippers, would benefit from such a feature. The effect of axial compression forces, however, is well known to reduce the transverse stiffness of beam-like structures. This paper deals with the effect of prestressing forces on compliant mechanisms. For this purpose, a mathematical description for a modal analysis of compliant mechanisms — based on the author’s former publications — is presented first. Building on this and using a compliant mechanism with one desired translational motion as example, the effect of prestressing forces on the desired deformation and its related stiffness value is analyzed using conventional methods which are based on the Bernoulli-Euler beam equation. However, these methods do not usually consider the undesirable deformations of a mechanism. The modal analysis mentioned above is therefore used in order to examine the effect of prestressing forces on both the desired and undesired deformations. In this analysis, two different compliant mechanisms in several load cases are examined.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analyzing the Effect of Prestressing Forces on Selective Compliant Mechanisms: A Case Study\",\"authors\":\"K. Mauser, Jan Friese, A. Hasse\",\"doi\":\"10.1115/detc2019-97799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Once it is designed, the stiffness of a compliant mechanism is not intended to be changed in order to adapt to special operation conditions. Nevertheless, various operation tasks e.g. mechanical grippers, would benefit from such a feature. The effect of axial compression forces, however, is well known to reduce the transverse stiffness of beam-like structures. This paper deals with the effect of prestressing forces on compliant mechanisms. For this purpose, a mathematical description for a modal analysis of compliant mechanisms — based on the author’s former publications — is presented first. Building on this and using a compliant mechanism with one desired translational motion as example, the effect of prestressing forces on the desired deformation and its related stiffness value is analyzed using conventional methods which are based on the Bernoulli-Euler beam equation. However, these methods do not usually consider the undesirable deformations of a mechanism. The modal analysis mentioned above is therefore used in order to examine the effect of prestressing forces on both the desired and undesired deformations. In this analysis, two different compliant mechanisms in several load cases are examined.\",\"PeriodicalId\":178253,\"journal\":{\"name\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一旦设计好,就不打算为了适应特殊的操作条件而改变柔性机构的刚度。然而,各种操作任务,如机械夹具,将受益于这种功能。然而,轴向压缩力的影响是众所周知的,可以降低梁状结构的横向刚度。本文讨论了预应力对柔性机构的影响。为此,首先提出了基于作者以前出版物的柔顺机构模态分析的数学描述。在此基础上,以具有一个期望平移运动的柔顺机构为例,采用基于伯努利-欧拉梁方程的常规方法分析了预应力对期望变形及其相关刚度值的影响。然而,这些方法通常不考虑机构的不良变形。因此,使用上面提到的模态分析来检查预应力对期望和不期望变形的影响。在这个分析中,两种不同的柔顺机制在几个负载情况下进行了检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the Effect of Prestressing Forces on Selective Compliant Mechanisms: A Case Study
Once it is designed, the stiffness of a compliant mechanism is not intended to be changed in order to adapt to special operation conditions. Nevertheless, various operation tasks e.g. mechanical grippers, would benefit from such a feature. The effect of axial compression forces, however, is well known to reduce the transverse stiffness of beam-like structures. This paper deals with the effect of prestressing forces on compliant mechanisms. For this purpose, a mathematical description for a modal analysis of compliant mechanisms — based on the author’s former publications — is presented first. Building on this and using a compliant mechanism with one desired translational motion as example, the effect of prestressing forces on the desired deformation and its related stiffness value is analyzed using conventional methods which are based on the Bernoulli-Euler beam equation. However, these methods do not usually consider the undesirable deformations of a mechanism. The modal analysis mentioned above is therefore used in order to examine the effect of prestressing forces on both the desired and undesired deformations. In this analysis, two different compliant mechanisms in several load cases are examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信