基于学习的自主QoS管理中间件

P. Vienne, J. Sourrouille
{"title":"基于学习的自主QoS管理中间件","authors":"P. Vienne, J. Sourrouille","doi":"10.1145/1108473.1108475","DOIUrl":null,"url":null,"abstract":"In any system, applications compete for a limited amount of resources. As long as there are enough resources, resource sharing based on a best effort policy is satisfactory. When resources become scarce, the system gives rise to uncontrol-lable degradations. From a global view of the system and according to the degrees of freedom of applications, Quality of Service (QoS) managers aim to adapt application behavior to deal with overload effects.This paper proposes a middleware for autonomic QoS management of a system in a dynamic environment. It associates a reinforcement learning technique with a control mechanism to improve and adapt the QoS management policy in an execution context that changes unexpectedly. The simulation of the QoS management of a set of heterogeneous applications illustrates our results.","PeriodicalId":344435,"journal":{"name":"Joint Conference on Lexical and Computational Semantics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"A middleware for autonomic QoS management based on learning\",\"authors\":\"P. Vienne, J. Sourrouille\",\"doi\":\"10.1145/1108473.1108475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In any system, applications compete for a limited amount of resources. As long as there are enough resources, resource sharing based on a best effort policy is satisfactory. When resources become scarce, the system gives rise to uncontrol-lable degradations. From a global view of the system and according to the degrees of freedom of applications, Quality of Service (QoS) managers aim to adapt application behavior to deal with overload effects.This paper proposes a middleware for autonomic QoS management of a system in a dynamic environment. It associates a reinforcement learning technique with a control mechanism to improve and adapt the QoS management policy in an execution context that changes unexpectedly. The simulation of the QoS management of a set of heterogeneous applications illustrates our results.\",\"PeriodicalId\":344435,\"journal\":{\"name\":\"Joint Conference on Lexical and Computational Semantics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joint Conference on Lexical and Computational Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1108473.1108475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Conference on Lexical and Computational Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1108473.1108475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

在任何系统中,应用程序都要争夺有限的资源。只要有足够的资源,基于尽力而为策略的资源共享是令人满意的。当资源变得稀缺时,系统会产生无法控制的退化。从系统的全局视图出发,根据应用程序的自由度,服务质量(QoS)管理人员的目标是调整应用程序的行为以处理过载效应。提出了一种用于动态环境下系统自主QoS管理的中间件。它将强化学习技术与控制机制相关联,以在意外变化的执行上下文中改进和适应QoS管理策略。对一组异构应用程序的QoS管理的仿真验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A middleware for autonomic QoS management based on learning
In any system, applications compete for a limited amount of resources. As long as there are enough resources, resource sharing based on a best effort policy is satisfactory. When resources become scarce, the system gives rise to uncontrol-lable degradations. From a global view of the system and according to the degrees of freedom of applications, Quality of Service (QoS) managers aim to adapt application behavior to deal with overload effects.This paper proposes a middleware for autonomic QoS management of a system in a dynamic environment. It associates a reinforcement learning technique with a control mechanism to improve and adapt the QoS management policy in an execution context that changes unexpectedly. The simulation of the QoS management of a set of heterogeneous applications illustrates our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信