一种利用进化计算技术内部推理求解csp的新方案

M. Ionita, Mihaela Breaban, Cornelius Croitoru
{"title":"一种利用进化计算技术内部推理求解csp的新方案","authors":"M. Ionita, Mihaela Breaban, Cornelius Croitoru","doi":"10.1109/SYNASC.2006.7","DOIUrl":null,"url":null,"abstract":"Combining inference and search produces successful schemes for solving constraint satisfaction problems. Based on this idea a general scheme which uses inference inside evolutionary computation techniques is presented. A genetic algorithm and the particle swarm optimization heuristic make use of adaptable inference levels offered by the mini-bucket elimination algorithm. Experimental results prove the efficiency of our approach in solving the Max-CSP optimization task. The inference/search trade-off is analyzed","PeriodicalId":309740,"journal":{"name":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Scheme of Using Inference Inside Evolutionary Computation Techniques to Solve CSPs\",\"authors\":\"M. Ionita, Mihaela Breaban, Cornelius Croitoru\",\"doi\":\"10.1109/SYNASC.2006.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining inference and search produces successful schemes for solving constraint satisfaction problems. Based on this idea a general scheme which uses inference inside evolutionary computation techniques is presented. A genetic algorithm and the particle swarm optimization heuristic make use of adaptable inference levels offered by the mini-bucket elimination algorithm. Experimental results prove the efficiency of our approach in solving the Max-CSP optimization task. The inference/search trade-off is analyzed\",\"PeriodicalId\":309740,\"journal\":{\"name\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2006.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2006.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

推理与搜索相结合,产生了求解约束满足问题的成功方案。在此基础上,提出了在进化计算技术中使用推理的一般方案。遗传算法和粒子群优化启发式算法利用了小桶消除算法提供的自适应推理水平。实验结果证明了该方法在求解Max-CSP优化任务中的有效性。分析了推理/搜索的权衡
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Scheme of Using Inference Inside Evolutionary Computation Techniques to Solve CSPs
Combining inference and search produces successful schemes for solving constraint satisfaction problems. Based on this idea a general scheme which uses inference inside evolutionary computation techniques is presented. A genetic algorithm and the particle swarm optimization heuristic make use of adaptable inference levels offered by the mini-bucket elimination algorithm. Experimental results prove the efficiency of our approach in solving the Max-CSP optimization task. The inference/search trade-off is analyzed
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信