{"title":"片上开关电容DC-DC变换器的性能建模与效率提升设计技术","authors":"Sunita Saini, D. Saini","doi":"10.21203/rs.3.rs-1219358/v1","DOIUrl":null,"url":null,"abstract":"\n Fundamental charge vector method analysis is a single parameter optimization technique limited to conduction loss assuming all frequency-dependent switching (parasitic) loss negligible. This paper investigates a generalized structure to design DC-DC SC converters based on conduction and switching loss. A new technique is proposed to find the optimum value of switching frequency and switch size to calculate target load current and output voltage that maximize the efficiency. The analysis is done to identify switching frequency and switch size for two-phase 2:1 series-parallel SC converter for a target load current of 2.67mA implemented on a 22nm technology node. Results show that a minimum of 250MHz switching frequency is required for target efficiency more than 90% and the output voltage greater than 0.85V where the switch size of a unit cell corresponds to 10Ω on-resistance. MATLAB and PSpice simulation tools are used for results and validation.","PeriodicalId":156550,"journal":{"name":"Wirel. Pers. Commun.","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Modelling and Design Techniques for Efficiency Improvement in On-chip Switched-Capacitor DC-DC Converter\",\"authors\":\"Sunita Saini, D. Saini\",\"doi\":\"10.21203/rs.3.rs-1219358/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fundamental charge vector method analysis is a single parameter optimization technique limited to conduction loss assuming all frequency-dependent switching (parasitic) loss negligible. This paper investigates a generalized structure to design DC-DC SC converters based on conduction and switching loss. A new technique is proposed to find the optimum value of switching frequency and switch size to calculate target load current and output voltage that maximize the efficiency. The analysis is done to identify switching frequency and switch size for two-phase 2:1 series-parallel SC converter for a target load current of 2.67mA implemented on a 22nm technology node. Results show that a minimum of 250MHz switching frequency is required for target efficiency more than 90% and the output voltage greater than 0.85V where the switch size of a unit cell corresponds to 10Ω on-resistance. MATLAB and PSpice simulation tools are used for results and validation.\",\"PeriodicalId\":156550,\"journal\":{\"name\":\"Wirel. Pers. Commun.\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wirel. Pers. Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-1219358/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Pers. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-1219358/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Modelling and Design Techniques for Efficiency Improvement in On-chip Switched-Capacitor DC-DC Converter
Fundamental charge vector method analysis is a single parameter optimization technique limited to conduction loss assuming all frequency-dependent switching (parasitic) loss negligible. This paper investigates a generalized structure to design DC-DC SC converters based on conduction and switching loss. A new technique is proposed to find the optimum value of switching frequency and switch size to calculate target load current and output voltage that maximize the efficiency. The analysis is done to identify switching frequency and switch size for two-phase 2:1 series-parallel SC converter for a target load current of 2.67mA implemented on a 22nm technology node. Results show that a minimum of 250MHz switching frequency is required for target efficiency more than 90% and the output voltage greater than 0.85V where the switch size of a unit cell corresponds to 10Ω on-resistance. MATLAB and PSpice simulation tools are used for results and validation.