Daniel Luis Notari, Samuel Brando Oldra, M. A. Mariani, C. Reolon, D. Bonatto
{"title":"Dis2PPI:一个整合蛋白质组学和遗传疾病数据的工作流程","authors":"Daniel Luis Notari, Samuel Brando Oldra, M. A. Mariani, C. Reolon, D. Bonatto","doi":"10.4018/jkdb.2012070104","DOIUrl":null,"url":null,"abstract":"Experiments in bioinformatics are based on protocols that employ different steps for data mining and data integration, collectively known as computational workflows. Considering the use of databases in the biomedical sciences software that is able to query multiple databases is desirable. Systems biology, which encompasses the design of interactomic networks to understand complex biological processes, can benefit from computational workflows. Unfortunately, the use of computational workflows in systems biology is still very limited, especially for applications associated with the study of disease. To address this limitation, we designed Dis2PPI, a workflow that integrates information retrieved from genetic disease databases and interactomes. Dis2PPI extracts protein names from a disease report and uses this information to mine protein-protein interaction PPI networks. The data gathered from this mining can be used in systems biology analyses. To demonstrate the functionality of Dis2PPI for systems biology analyses, the authors mined information about xeroderma pigmentosum and Cockayne syndrome, two monogenic diseases that lead to skin cancer when the patients are exposed to sunlight and neurodegeneration.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Dis2PPI: A Workflow Designed to Integrate Proteomic and Genetic Disease Data\",\"authors\":\"Daniel Luis Notari, Samuel Brando Oldra, M. A. Mariani, C. Reolon, D. Bonatto\",\"doi\":\"10.4018/jkdb.2012070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experiments in bioinformatics are based on protocols that employ different steps for data mining and data integration, collectively known as computational workflows. Considering the use of databases in the biomedical sciences software that is able to query multiple databases is desirable. Systems biology, which encompasses the design of interactomic networks to understand complex biological processes, can benefit from computational workflows. Unfortunately, the use of computational workflows in systems biology is still very limited, especially for applications associated with the study of disease. To address this limitation, we designed Dis2PPI, a workflow that integrates information retrieved from genetic disease databases and interactomes. Dis2PPI extracts protein names from a disease report and uses this information to mine protein-protein interaction PPI networks. The data gathered from this mining can be used in systems biology analyses. To demonstrate the functionality of Dis2PPI for systems biology analyses, the authors mined information about xeroderma pigmentosum and Cockayne syndrome, two monogenic diseases that lead to skin cancer when the patients are exposed to sunlight and neurodegeneration.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jkdb.2012070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2012070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dis2PPI: A Workflow Designed to Integrate Proteomic and Genetic Disease Data
Experiments in bioinformatics are based on protocols that employ different steps for data mining and data integration, collectively known as computational workflows. Considering the use of databases in the biomedical sciences software that is able to query multiple databases is desirable. Systems biology, which encompasses the design of interactomic networks to understand complex biological processes, can benefit from computational workflows. Unfortunately, the use of computational workflows in systems biology is still very limited, especially for applications associated with the study of disease. To address this limitation, we designed Dis2PPI, a workflow that integrates information retrieved from genetic disease databases and interactomes. Dis2PPI extracts protein names from a disease report and uses this information to mine protein-protein interaction PPI networks. The data gathered from this mining can be used in systems biology analyses. To demonstrate the functionality of Dis2PPI for systems biology analyses, the authors mined information about xeroderma pigmentosum and Cockayne syndrome, two monogenic diseases that lead to skin cancer when the patients are exposed to sunlight and neurodegeneration.