自适应均衡的集隶属度辨识

Yih-Fang Huang, S. Gollamudi
{"title":"自适应均衡的集隶属度辨识","authors":"Yih-Fang Huang, S. Gollamudi","doi":"10.1109/MWSCAS.1995.510214","DOIUrl":null,"url":null,"abstract":"This paper proposes employing set-membership identification for adaptive equalization. A novel feature of the set-membership identification (SMI) is selective update of the estimates for the channel parameters. This is in sharp contrast with conventional recursive schemes such as recursive least-squares (RLS) which updates continually regardless of the benefit of updates. Simulation results show that the SMI algorithm uses less than 20% of the data for parameter updates in the training mode and less than 10% of the data in the decision-directed mode, without much performance degradation in terms of bit error rate.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Set-membership identification for adaptive equalization\",\"authors\":\"Yih-Fang Huang, S. Gollamudi\",\"doi\":\"10.1109/MWSCAS.1995.510214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes employing set-membership identification for adaptive equalization. A novel feature of the set-membership identification (SMI) is selective update of the estimates for the channel parameters. This is in sharp contrast with conventional recursive schemes such as recursive least-squares (RLS) which updates continually regardless of the benefit of updates. Simulation results show that the SMI algorithm uses less than 20% of the data for parameter updates in the training mode and less than 10% of the data in the decision-directed mode, without much performance degradation in terms of bit error rate.\",\"PeriodicalId\":165081,\"journal\":{\"name\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1995.510214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.510214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种集隶属度辨识的自适应均衡方法。集隶属度识别(SMI)的一个新特征是信道参数估计的选择性更新。这与传统的递归方案(如递归最小二乘(RLS))形成鲜明对比,后者不断更新,而不考虑更新的好处。仿真结果表明,SMI算法在训练模式下使用不到20%的数据进行参数更新,在决策导向模式下使用不到10%的数据进行参数更新,并且在误码率方面没有很大的性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Set-membership identification for adaptive equalization
This paper proposes employing set-membership identification for adaptive equalization. A novel feature of the set-membership identification (SMI) is selective update of the estimates for the channel parameters. This is in sharp contrast with conventional recursive schemes such as recursive least-squares (RLS) which updates continually regardless of the benefit of updates. Simulation results show that the SMI algorithm uses less than 20% of the data for parameter updates in the training mode and less than 10% of the data in the decision-directed mode, without much performance degradation in terms of bit error rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信