{"title":"心电图异常检测的降维:一种流形方法","authors":"Zhinan Li, Wenyao Xu, A. Huang, M. Sarrafzadeh","doi":"10.1109/BSN.2012.12","DOIUrl":null,"url":null,"abstract":"ECG analysis is universal and important in miscellaneous medical applications. However, high computation complexity is a problem which has been shown in several levels of conventional data mining algorithms for ECG analysis. In this paper, we presented a novel manifold approach to visualize and analyze the ECG signal. According to regularity of the data, our algorithm can discover the intrinsic structure and represent the streaming data with a 1-D manifold on a 2-D space. Furthermore, the proposed algorithm can reliably detect the anomaly in ECG streaming data. We evaluated the performance of the algorithm with two different anomalies in wearable applications: for the anomaly from heart disorders such as apnea, arrythmia, our algorithm could achieve up to 90% recognition rate, for the anomaly from the ECG device, our algorithm could detect the outlier with 100%.","PeriodicalId":101720,"journal":{"name":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Dimensionality Reduction for Anomaly Detection in Electrocardiography: A Manifold Approach\",\"authors\":\"Zhinan Li, Wenyao Xu, A. Huang, M. Sarrafzadeh\",\"doi\":\"10.1109/BSN.2012.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ECG analysis is universal and important in miscellaneous medical applications. However, high computation complexity is a problem which has been shown in several levels of conventional data mining algorithms for ECG analysis. In this paper, we presented a novel manifold approach to visualize and analyze the ECG signal. According to regularity of the data, our algorithm can discover the intrinsic structure and represent the streaming data with a 1-D manifold on a 2-D space. Furthermore, the proposed algorithm can reliably detect the anomaly in ECG streaming data. We evaluated the performance of the algorithm with two different anomalies in wearable applications: for the anomaly from heart disorders such as apnea, arrythmia, our algorithm could achieve up to 90% recognition rate, for the anomaly from the ECG device, our algorithm could detect the outlier with 100%.\",\"PeriodicalId\":101720,\"journal\":{\"name\":\"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2012.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2012.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dimensionality Reduction for Anomaly Detection in Electrocardiography: A Manifold Approach
ECG analysis is universal and important in miscellaneous medical applications. However, high computation complexity is a problem which has been shown in several levels of conventional data mining algorithms for ECG analysis. In this paper, we presented a novel manifold approach to visualize and analyze the ECG signal. According to regularity of the data, our algorithm can discover the intrinsic structure and represent the streaming data with a 1-D manifold on a 2-D space. Furthermore, the proposed algorithm can reliably detect the anomaly in ECG streaming data. We evaluated the performance of the algorithm with two different anomalies in wearable applications: for the anomaly from heart disorders such as apnea, arrythmia, our algorithm could achieve up to 90% recognition rate, for the anomaly from the ECG device, our algorithm could detect the outlier with 100%.