利用条件生成变分自编码器网络提高光谱学中数据的代表性

A. Efitorov, T. Dolenko, K. Laptinskiy, S. Burikov, S. Dolenko
{"title":"利用条件生成变分自编码器网络提高光谱学中数据的代表性","authors":"A. Efitorov, T. Dolenko, K. Laptinskiy, S. Burikov, S. Dolenko","doi":"10.22323/1.410.0013","DOIUrl":null,"url":null,"abstract":"In this study, the solution of the inverse problem of spectroscopy of water-ethanol liquid solutions by neural network models is considered. The process of training a neural network requires a large number of patterns, which cannot be obtained by laboratory measurements. In this paper, we demonstrate the possibility of generating an additional array of patterns using a conditional variational autoencoder. The generated patterns have a form similar to real spectra, and they are used to train the neural network for classification, along with the original patterns. As a result of applying this approach, it was possible to improve the quality of solving the inverse problem on real patterns that were not used in the training process.","PeriodicalId":217453,"journal":{"name":"Proceedings of The 5th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2021)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Conditional Generative Variational Autoencoder Networks to Improve Representativity of Data in Optical Spectroscopy\",\"authors\":\"A. Efitorov, T. Dolenko, K. Laptinskiy, S. Burikov, S. Dolenko\",\"doi\":\"10.22323/1.410.0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the solution of the inverse problem of spectroscopy of water-ethanol liquid solutions by neural network models is considered. The process of training a neural network requires a large number of patterns, which cannot be obtained by laboratory measurements. In this paper, we demonstrate the possibility of generating an additional array of patterns using a conditional variational autoencoder. The generated patterns have a form similar to real spectra, and they are used to train the neural network for classification, along with the original patterns. As a result of applying this approach, it was possible to improve the quality of solving the inverse problem on real patterns that were not used in the training process.\",\"PeriodicalId\":217453,\"journal\":{\"name\":\"Proceedings of The 5th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2021)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 5th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.410.0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 5th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.410.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了用神经网络模型求解水-乙醇溶液的光谱反问题。训练神经网络的过程需要大量的模式,这是无法通过实验室测量获得的。在本文中,我们演示了使用条件变分自编码器生成额外模式数组的可能性。生成的模式具有与真实光谱相似的形式,并与原始模式一起用于训练神经网络进行分类。应用这种方法的结果是,有可能提高在训练过程中未使用的真实模式上求解逆问题的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Conditional Generative Variational Autoencoder Networks to Improve Representativity of Data in Optical Spectroscopy
In this study, the solution of the inverse problem of spectroscopy of water-ethanol liquid solutions by neural network models is considered. The process of training a neural network requires a large number of patterns, which cannot be obtained by laboratory measurements. In this paper, we demonstrate the possibility of generating an additional array of patterns using a conditional variational autoencoder. The generated patterns have a form similar to real spectra, and they are used to train the neural network for classification, along with the original patterns. As a result of applying this approach, it was possible to improve the quality of solving the inverse problem on real patterns that were not used in the training process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信