{"title":"一种用于游戏的多代理体系结构","authors":"Ziad Kobti, Shiven Sharma","doi":"10.1109/CIG.2007.368109","DOIUrl":null,"url":null,"abstract":"General game playing, a relatively new field in game research, presents new frontiers in building intelligent game players. The traditional premise for building a good artificially intelligent player is that the game is known to the player and pre-programmed to play accordingly. General game players challenge game programmers by not identifying the game until the beginning of game play. In this paper we explore a new approach to intelligent general game playing employing a self-organizing, multiple-agent evolutionary learning strategy. In order to decide on an intelligent move, specialized agents interact with each other and evolve competitive solutions to decide on the best move, sharing the learnt experience and using it to train themselves in a social environment. In an experimental setup using a simple board game, the evolutionary agents employing a learning strategy by training themselves from their own experiences, and without prior knowledge of the game, demonstrate to be as effective as other strong dedicated heuristics. This approach provides a potential for new intelligent game playing program design in the absence of prior knowledge of the game at hand","PeriodicalId":365269,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Games","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Multi-Agent Architecture for Game Playing\",\"authors\":\"Ziad Kobti, Shiven Sharma\",\"doi\":\"10.1109/CIG.2007.368109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General game playing, a relatively new field in game research, presents new frontiers in building intelligent game players. The traditional premise for building a good artificially intelligent player is that the game is known to the player and pre-programmed to play accordingly. General game players challenge game programmers by not identifying the game until the beginning of game play. In this paper we explore a new approach to intelligent general game playing employing a self-organizing, multiple-agent evolutionary learning strategy. In order to decide on an intelligent move, specialized agents interact with each other and evolve competitive solutions to decide on the best move, sharing the learnt experience and using it to train themselves in a social environment. In an experimental setup using a simple board game, the evolutionary agents employing a learning strategy by training themselves from their own experiences, and without prior knowledge of the game, demonstrate to be as effective as other strong dedicated heuristics. This approach provides a potential for new intelligent game playing program design in the absence of prior knowledge of the game at hand\",\"PeriodicalId\":365269,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2007.368109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2007.368109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
General game playing, a relatively new field in game research, presents new frontiers in building intelligent game players. The traditional premise for building a good artificially intelligent player is that the game is known to the player and pre-programmed to play accordingly. General game players challenge game programmers by not identifying the game until the beginning of game play. In this paper we explore a new approach to intelligent general game playing employing a self-organizing, multiple-agent evolutionary learning strategy. In order to decide on an intelligent move, specialized agents interact with each other and evolve competitive solutions to decide on the best move, sharing the learnt experience and using it to train themselves in a social environment. In an experimental setup using a simple board game, the evolutionary agents employing a learning strategy by training themselves from their own experiences, and without prior knowledge of the game, demonstrate to be as effective as other strong dedicated heuristics. This approach provides a potential for new intelligent game playing program design in the absence of prior knowledge of the game at hand