{"title":"用等效对角支撑模型分析约束砌体墙的推覆","authors":"Nemanja Krtinić, M. Gams, M. Marinković","doi":"10.5592/co/2crocee.2023.30","DOIUrl":null,"url":null,"abstract":"Masonry structures are commonly used for building residential buildings throughout the Balkans and worldwide, in urban and rural areas and areas with seismic risk. For masonry construction in regions with seismic risk, confined masonry (CM) construction offers an appealing alternative to unreinforced masonry (URM) due to its better seismic performance. The numerical simulation of CM is often based on the Equivalent Strut Model (ESM). Such a model provides a very reasonable compromise between accuracy and efficiency and is simple enough for use in design. The purpose of this paper is to compare the results of an experimental shear compression test on a modern CM wall with different ESM models. Five ESM models proposed by various authors are compared. The numerical pushover analyses were performed in the SAP2000 software, and the reference points of the model that gave the best alignment with experimental results were estimated using regression analyses. The results show that the simple modelling of CM walls with an equivalent diagonal strut, which carries load only in compression, can accurately simulate the global seismic response and is suitable for practical applications.","PeriodicalId":427395,"journal":{"name":"2nd Croatian Conference on Earthquake Engineering ‒ 2CroCEE","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PUSHOVER ANALYSIS OF CONFINED MASONRY WALLS USING EQUIVALENT DIAGONAL STRUT MODELS\",\"authors\":\"Nemanja Krtinić, M. Gams, M. Marinković\",\"doi\":\"10.5592/co/2crocee.2023.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Masonry structures are commonly used for building residential buildings throughout the Balkans and worldwide, in urban and rural areas and areas with seismic risk. For masonry construction in regions with seismic risk, confined masonry (CM) construction offers an appealing alternative to unreinforced masonry (URM) due to its better seismic performance. The numerical simulation of CM is often based on the Equivalent Strut Model (ESM). Such a model provides a very reasonable compromise between accuracy and efficiency and is simple enough for use in design. The purpose of this paper is to compare the results of an experimental shear compression test on a modern CM wall with different ESM models. Five ESM models proposed by various authors are compared. The numerical pushover analyses were performed in the SAP2000 software, and the reference points of the model that gave the best alignment with experimental results were estimated using regression analyses. The results show that the simple modelling of CM walls with an equivalent diagonal strut, which carries load only in compression, can accurately simulate the global seismic response and is suitable for practical applications.\",\"PeriodicalId\":427395,\"journal\":{\"name\":\"2nd Croatian Conference on Earthquake Engineering ‒ 2CroCEE\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd Croatian Conference on Earthquake Engineering ‒ 2CroCEE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5592/co/2crocee.2023.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd Croatian Conference on Earthquake Engineering ‒ 2CroCEE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5592/co/2crocee.2023.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PUSHOVER ANALYSIS OF CONFINED MASONRY WALLS USING EQUIVALENT DIAGONAL STRUT MODELS
Masonry structures are commonly used for building residential buildings throughout the Balkans and worldwide, in urban and rural areas and areas with seismic risk. For masonry construction in regions with seismic risk, confined masonry (CM) construction offers an appealing alternative to unreinforced masonry (URM) due to its better seismic performance. The numerical simulation of CM is often based on the Equivalent Strut Model (ESM). Such a model provides a very reasonable compromise between accuracy and efficiency and is simple enough for use in design. The purpose of this paper is to compare the results of an experimental shear compression test on a modern CM wall with different ESM models. Five ESM models proposed by various authors are compared. The numerical pushover analyses were performed in the SAP2000 software, and the reference points of the model that gave the best alignment with experimental results were estimated using regression analyses. The results show that the simple modelling of CM walls with an equivalent diagonal strut, which carries load only in compression, can accurately simulate the global seismic response and is suitable for practical applications.