基于FPGA的并行邻域搜索

S. Yu, Y. Lam
{"title":"基于FPGA的并行邻域搜索","authors":"S. Yu, Y. Lam","doi":"10.1109/TENCON.2013.6718819","DOIUrl":null,"url":null,"abstract":"An FPGA based generic parallel neighborhood search which exploits parallelism at both search and move levels is proposed. A neighborhood partitioning technique is employed to significantly increase parallelism at move level with minimum hardware resource increment. The proposed approach is applied to a tabu search and evaluated using the quadratic assignment problem. Experimental results show that the proposed technique can enhance the search speed by 13.3 times with a solution quality improvement of 11.9%. Compared with a GPU implementation, this work achieves a speedup of 20.2 times.","PeriodicalId":425023,"journal":{"name":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA based parallel neighborhood search\",\"authors\":\"S. Yu, Y. Lam\",\"doi\":\"10.1109/TENCON.2013.6718819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An FPGA based generic parallel neighborhood search which exploits parallelism at both search and move levels is proposed. A neighborhood partitioning technique is employed to significantly increase parallelism at move level with minimum hardware resource increment. The proposed approach is applied to a tabu search and evaluated using the quadratic assignment problem. Experimental results show that the proposed technique can enhance the search speed by 13.3 times with a solution quality improvement of 11.9%. Compared with a GPU implementation, this work achieves a speedup of 20.2 times.\",\"PeriodicalId\":425023,\"journal\":{\"name\":\"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2013.6718819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2013.6718819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于FPGA的通用并行邻域搜索方法,该方法利用了搜索和移动两个层次的并行性。采用邻域分区技术,以最小的硬件资源增量显著提高移动级并行度。将该方法应用于禁忌搜索,并使用二次分配问题进行评估。实验结果表明,该方法可将搜索速度提高13.3倍,求解质量提高11.9%。与GPU实现相比,这项工作实现了20.2倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA based parallel neighborhood search
An FPGA based generic parallel neighborhood search which exploits parallelism at both search and move levels is proposed. A neighborhood partitioning technique is employed to significantly increase parallelism at move level with minimum hardware resource increment. The proposed approach is applied to a tabu search and evaluated using the quadratic assignment problem. Experimental results show that the proposed technique can enhance the search speed by 13.3 times with a solution quality improvement of 11.9%. Compared with a GPU implementation, this work achieves a speedup of 20.2 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信