人脸嵌入分类中分类器的比较研究

Sourabh Sarkar, Geeta Sikka
{"title":"人脸嵌入分类中分类器的比较研究","authors":"Sourabh Sarkar, Geeta Sikka","doi":"10.1109/ICSCCC.2018.8703359","DOIUrl":null,"url":null,"abstract":"Face recognition, recently, has been a fast and effective method of authentication with the advent of deep learning and powerful hardware. This paper investigates different classifiers used in classifying facial embeddings and evaluates their performance. The paper also focuses on an easily deployable pipeline for face recognition using Python which can be used to develop a face recognition system on portable low-power hardware devices. The methodology discussed uses pretrained models and frameworks which results in state-of-the-art performance without the need of any powerful hardware. The proposed methodology achieves an F1 score of 0. 9947with an AUC score of 0.9997 on LFW dataset.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comparative study of classifiers used in facial embedding classification\",\"authors\":\"Sourabh Sarkar, Geeta Sikka\",\"doi\":\"10.1109/ICSCCC.2018.8703359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition, recently, has been a fast and effective method of authentication with the advent of deep learning and powerful hardware. This paper investigates different classifiers used in classifying facial embeddings and evaluates their performance. The paper also focuses on an easily deployable pipeline for face recognition using Python which can be used to develop a face recognition system on portable low-power hardware devices. The methodology discussed uses pretrained models and frameworks which results in state-of-the-art performance without the need of any powerful hardware. The proposed methodology achieves an F1 score of 0. 9947with an AUC score of 0.9997 on LFW dataset.\",\"PeriodicalId\":148491,\"journal\":{\"name\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCCC.2018.8703359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,随着深度学习和强大硬件的出现,人脸识别已经成为一种快速有效的身份验证方法。本文研究了用于人脸嵌入分类的不同分类器,并对其性能进行了评价。本文还重点介绍了一个使用Python的易于部署的人脸识别管道,该管道可用于在便携式低功耗硬件设备上开发人脸识别系统。所讨论的方法使用预训练的模型和框架,从而在不需要任何强大硬件的情况下获得最先进的性能。该方法的F1得分为0。9947,在LFW数据集上AUC得分为0.9997。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of classifiers used in facial embedding classification
Face recognition, recently, has been a fast and effective method of authentication with the advent of deep learning and powerful hardware. This paper investigates different classifiers used in classifying facial embeddings and evaluates their performance. The paper also focuses on an easily deployable pipeline for face recognition using Python which can be used to develop a face recognition system on portable low-power hardware devices. The methodology discussed uses pretrained models and frameworks which results in state-of-the-art performance without the need of any powerful hardware. The proposed methodology achieves an F1 score of 0. 9947with an AUC score of 0.9997 on LFW dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信