{"title":"基于人工智能的HRV综合软硬件系统评估、干预和性能优化","authors":"Robert L. Drury","doi":"10.5772/intechopen.89042","DOIUrl":null,"url":null,"abstract":"Heart rate variability (HRV) is increasingly recognized as a central variable of interest in health maintenance, disease prevention and performance optimization. It is also a sensitive biomarker of health status, disease presence and functional abilities, acquiring and processing high fidelity inter beat interval data, along with other psychophysiological parameters that can assist in clinical assessment and intervention, population health studies/digital epidemiology and positive performance optimization. We describe a system using high-throughput artificial intelligence based on the KUBIOS platform to combine time, frequency and nonlinear data domains acquired by wearable or implanted biosensors to guide in clinical assessment, decision support and intervention, population health monitoring and individual self-regulation and performance enhancement, including the use of HRV biofeedback. This approach follows the iP4 health model which emphasizes an integral, personalized, predictive, preventive and participatory approach to human health and well-being. It therefore includes psychological, biological, genomic, sociocultural, evolutionary and spiritual variables as mutually interactive elements in embodying complex systems adaptation.","PeriodicalId":382562,"journal":{"name":"Autonomic Nervous System Monitoring - Heart Rate Variability","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HRV in an Integrated Hardware/Software System Using Artificial Intelligence to Provide Assessment, Intervention and Performance Optimization\",\"authors\":\"Robert L. Drury\",\"doi\":\"10.5772/intechopen.89042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart rate variability (HRV) is increasingly recognized as a central variable of interest in health maintenance, disease prevention and performance optimization. It is also a sensitive biomarker of health status, disease presence and functional abilities, acquiring and processing high fidelity inter beat interval data, along with other psychophysiological parameters that can assist in clinical assessment and intervention, population health studies/digital epidemiology and positive performance optimization. We describe a system using high-throughput artificial intelligence based on the KUBIOS platform to combine time, frequency and nonlinear data domains acquired by wearable or implanted biosensors to guide in clinical assessment, decision support and intervention, population health monitoring and individual self-regulation and performance enhancement, including the use of HRV biofeedback. This approach follows the iP4 health model which emphasizes an integral, personalized, predictive, preventive and participatory approach to human health and well-being. It therefore includes psychological, biological, genomic, sociocultural, evolutionary and spiritual variables as mutually interactive elements in embodying complex systems adaptation.\",\"PeriodicalId\":382562,\"journal\":{\"name\":\"Autonomic Nervous System Monitoring - Heart Rate Variability\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomic Nervous System Monitoring - Heart Rate Variability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.89042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomic Nervous System Monitoring - Heart Rate Variability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HRV in an Integrated Hardware/Software System Using Artificial Intelligence to Provide Assessment, Intervention and Performance Optimization
Heart rate variability (HRV) is increasingly recognized as a central variable of interest in health maintenance, disease prevention and performance optimization. It is also a sensitive biomarker of health status, disease presence and functional abilities, acquiring and processing high fidelity inter beat interval data, along with other psychophysiological parameters that can assist in clinical assessment and intervention, population health studies/digital epidemiology and positive performance optimization. We describe a system using high-throughput artificial intelligence based on the KUBIOS platform to combine time, frequency and nonlinear data domains acquired by wearable or implanted biosensors to guide in clinical assessment, decision support and intervention, population health monitoring and individual self-regulation and performance enhancement, including the use of HRV biofeedback. This approach follows the iP4 health model which emphasizes an integral, personalized, predictive, preventive and participatory approach to human health and well-being. It therefore includes psychological, biological, genomic, sociocultural, evolutionary and spiritual variables as mutually interactive elements in embodying complex systems adaptation.