结合最小噪声分数和变分模态分解的高光谱分类研究

Linlin Chen, Linzhao Hao, Fulong Liu, Quan Chen
{"title":"结合最小噪声分数和变分模态分解的高光谱分类研究","authors":"Linlin Chen, Linzhao Hao, Fulong Liu, Quan Chen","doi":"10.1109/IAEAC54830.2022.9929638","DOIUrl":null,"url":null,"abstract":"Supervised classification is one of the widespread applications in hyperspectral data analysis. Due to the large number of hyperspectral data bands and the redundancy of information between the bands, it brings great challenges to hyperspectral classification. The effect of hyperspectral data feature extraction determines the performance of classification accuracy. In order to improve the classification accuracy, this paper proposes a joint feature extraction method based on minimum noise fraction (MNF) and variational mode decomposition (VMD). The hyperspectral data is firstly minimum noise fraction transformed, and then the first few MNF sequences containing the main information of the hyperspectral are subjected to VMD. Then, identify and classify each mode component obtained by decomposing. Finally, through the support vector machine (SVM) classification and comparative analysis, the method has a good accuracy.","PeriodicalId":349113,"journal":{"name":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Hyperspectral Classification Combined with Minimum Noise Fraction and Variational Mode Decomposition\",\"authors\":\"Linlin Chen, Linzhao Hao, Fulong Liu, Quan Chen\",\"doi\":\"10.1109/IAEAC54830.2022.9929638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised classification is one of the widespread applications in hyperspectral data analysis. Due to the large number of hyperspectral data bands and the redundancy of information between the bands, it brings great challenges to hyperspectral classification. The effect of hyperspectral data feature extraction determines the performance of classification accuracy. In order to improve the classification accuracy, this paper proposes a joint feature extraction method based on minimum noise fraction (MNF) and variational mode decomposition (VMD). The hyperspectral data is firstly minimum noise fraction transformed, and then the first few MNF sequences containing the main information of the hyperspectral are subjected to VMD. Then, identify and classify each mode component obtained by decomposing. Finally, through the support vector machine (SVM) classification and comparative analysis, the method has a good accuracy.\",\"PeriodicalId\":349113,\"journal\":{\"name\":\"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC54830.2022.9929638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC54830.2022.9929638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

监督分类是高光谱数据分析中广泛应用的方法之一。由于高光谱数据波段数量多,波段间信息冗余,给高光谱分类带来了很大的挑战。高光谱数据特征提取的效果决定了分类精度的表现。为了提高分类精度,本文提出了一种基于最小噪声分数(MNF)和变分模态分解(VMD)的联合特征提取方法。首先对高光谱数据进行最小噪声变换,然后对包含高光谱主要信息的前几个MNF序列进行VMD处理。然后,对分解得到的各个模态分量进行识别和分类。最后,通过支持向量机(SVM)分类和对比分析,该方法具有较好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Hyperspectral Classification Combined with Minimum Noise Fraction and Variational Mode Decomposition
Supervised classification is one of the widespread applications in hyperspectral data analysis. Due to the large number of hyperspectral data bands and the redundancy of information between the bands, it brings great challenges to hyperspectral classification. The effect of hyperspectral data feature extraction determines the performance of classification accuracy. In order to improve the classification accuracy, this paper proposes a joint feature extraction method based on minimum noise fraction (MNF) and variational mode decomposition (VMD). The hyperspectral data is firstly minimum noise fraction transformed, and then the first few MNF sequences containing the main information of the hyperspectral are subjected to VMD. Then, identify and classify each mode component obtained by decomposing. Finally, through the support vector machine (SVM) classification and comparative analysis, the method has a good accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信