{"title":"通过字典的稀疏表示处理和分析黑素细胞病变的宏观图像","authors":"Eliezer Soares Flores, Jacob Scharcanski","doi":"10.5753/sbcas_estendido.2023.229522","DOIUrl":null,"url":null,"abstract":"O melanoma é o tipo mais letal de câncer de pele, uma vez que é mais propenso à metástase. Especificamente, a taxa de pacientes que sobrevivem pelo menos cinco anos após o diagnóstico dessa doença no estágio inicial é superior a 99%. No entanto, essa taxa diminui para cerca de 25% se a detecção ocorre somente no último estágio. Nesse contexto, sistemas que auxiliem no diagnóstico precoce do melanoma podem desempenhar um papel de extrema importância, especialmente em regiões nas quais o acesso a dermatologistas é precário. Contudo, diferenciar um melanoma de lesões melanocíticas benignas pode ser uma tarefa desafiadora, mesmo para especialistas experientes. Para lidar com esse problema, nesta tese, propõe-se um sistema automático para detectação de melanoma a partir de uma simples fotografia digital, o qual baseia-se em modelos de representações esparsas. Os resultados apresentados pelo sistema proposto são promissores e sugerem que o sistema proposto pode potencialmente superar alternativas estado-da-arte e até mesmo médicos treinados.","PeriodicalId":354386,"journal":{"name":"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representações Esparsas Através de Dicionários para Processamento e Análise de Imagens Macroscópicas de Lesões Melanocíticas\",\"authors\":\"Eliezer Soares Flores, Jacob Scharcanski\",\"doi\":\"10.5753/sbcas_estendido.2023.229522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O melanoma é o tipo mais letal de câncer de pele, uma vez que é mais propenso à metástase. Especificamente, a taxa de pacientes que sobrevivem pelo menos cinco anos após o diagnóstico dessa doença no estágio inicial é superior a 99%. No entanto, essa taxa diminui para cerca de 25% se a detecção ocorre somente no último estágio. Nesse contexto, sistemas que auxiliem no diagnóstico precoce do melanoma podem desempenhar um papel de extrema importância, especialmente em regiões nas quais o acesso a dermatologistas é precário. Contudo, diferenciar um melanoma de lesões melanocíticas benignas pode ser uma tarefa desafiadora, mesmo para especialistas experientes. Para lidar com esse problema, nesta tese, propõe-se um sistema automático para detectação de melanoma a partir de uma simples fotografia digital, o qual baseia-se em modelos de representações esparsas. Os resultados apresentados pelo sistema proposto são promissores e sugerem que o sistema proposto pode potencialmente superar alternativas estado-da-arte e até mesmo médicos treinados.\",\"PeriodicalId\":354386,\"journal\":{\"name\":\"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas_estendido.2023.229522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas_estendido.2023.229522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Representações Esparsas Através de Dicionários para Processamento e Análise de Imagens Macroscópicas de Lesões Melanocíticas
O melanoma é o tipo mais letal de câncer de pele, uma vez que é mais propenso à metástase. Especificamente, a taxa de pacientes que sobrevivem pelo menos cinco anos após o diagnóstico dessa doença no estágio inicial é superior a 99%. No entanto, essa taxa diminui para cerca de 25% se a detecção ocorre somente no último estágio. Nesse contexto, sistemas que auxiliem no diagnóstico precoce do melanoma podem desempenhar um papel de extrema importância, especialmente em regiões nas quais o acesso a dermatologistas é precário. Contudo, diferenciar um melanoma de lesões melanocíticas benignas pode ser uma tarefa desafiadora, mesmo para especialistas experientes. Para lidar com esse problema, nesta tese, propõe-se um sistema automático para detectação de melanoma a partir de uma simples fotografia digital, o qual baseia-se em modelos de representações esparsas. Os resultados apresentados pelo sistema proposto são promissores e sugerem que o sistema proposto pode potencialmente superar alternativas estado-da-arte e até mesmo médicos treinados.