通过字典的稀疏表示处理和分析黑素细胞病变的宏观图像

Eliezer Soares Flores, Jacob Scharcanski
{"title":"通过字典的稀疏表示处理和分析黑素细胞病变的宏观图像","authors":"Eliezer Soares Flores, Jacob Scharcanski","doi":"10.5753/sbcas_estendido.2023.229522","DOIUrl":null,"url":null,"abstract":"O melanoma é o tipo mais letal de câncer de pele, uma vez que é mais propenso à metástase. Especificamente, a taxa de pacientes que sobrevivem pelo menos cinco anos após o diagnóstico dessa doença no estágio inicial é superior a 99%. No entanto, essa taxa diminui para cerca de 25% se a detecção ocorre somente no último estágio. Nesse contexto, sistemas que auxiliem no diagnóstico precoce do melanoma podem desempenhar um papel de extrema importância, especialmente em regiões nas quais o acesso a dermatologistas é precário. Contudo, diferenciar um melanoma de lesões melanocíticas benignas pode ser uma tarefa desafiadora, mesmo para especialistas experientes. Para lidar com esse problema, nesta tese, propõe-se um sistema automático para detectação de melanoma a partir de uma simples fotografia digital, o qual baseia-se em modelos de representações esparsas. Os resultados apresentados pelo sistema proposto são promissores e sugerem que o sistema proposto pode potencialmente superar alternativas estado-da-arte e até mesmo médicos treinados.","PeriodicalId":354386,"journal":{"name":"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representações Esparsas Através de Dicionários para Processamento e Análise de Imagens Macroscópicas de Lesões Melanocíticas\",\"authors\":\"Eliezer Soares Flores, Jacob Scharcanski\",\"doi\":\"10.5753/sbcas_estendido.2023.229522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O melanoma é o tipo mais letal de câncer de pele, uma vez que é mais propenso à metástase. Especificamente, a taxa de pacientes que sobrevivem pelo menos cinco anos após o diagnóstico dessa doença no estágio inicial é superior a 99%. No entanto, essa taxa diminui para cerca de 25% se a detecção ocorre somente no último estágio. Nesse contexto, sistemas que auxiliem no diagnóstico precoce do melanoma podem desempenhar um papel de extrema importância, especialmente em regiões nas quais o acesso a dermatologistas é precário. Contudo, diferenciar um melanoma de lesões melanocíticas benignas pode ser uma tarefa desafiadora, mesmo para especialistas experientes. Para lidar com esse problema, nesta tese, propõe-se um sistema automático para detectação de melanoma a partir de uma simples fotografia digital, o qual baseia-se em modelos de representações esparsas. Os resultados apresentados pelo sistema proposto são promissores e sugerem que o sistema proposto pode potencialmente superar alternativas estado-da-arte e até mesmo médicos treinados.\",\"PeriodicalId\":354386,\"journal\":{\"name\":\"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas_estendido.2023.229522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas_estendido.2023.229522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

黑色素瘤是最致命的皮肤癌类型,因为它更容易转移。具体来说,在早期诊断出该病后至少存活5年的患者比例超过99%。然而,如果检测只发生在最后阶段,这个比率就会下降到25%左右。在这种情况下,帮助黑色素瘤早期诊断的系统可以发挥极其重要的作用,特别是在皮肤科医生不稳定的地区。然而,即使对经验丰富的专家来说,区分良性黑素细胞病变和黑色素瘤也是一项具有挑战性的任务。为了解决这一问题,本文提出了一种基于稀疏表示模型的简单数码照片自动检测黑色素瘤的系统。所提出的系统的结果是有希望的,并表明所提出的系统可能超过最先进的替代方案,甚至训练有素的医生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representações Esparsas Através de Dicionários para Processamento e Análise de Imagens Macroscópicas de Lesões Melanocíticas
O melanoma é o tipo mais letal de câncer de pele, uma vez que é mais propenso à metástase. Especificamente, a taxa de pacientes que sobrevivem pelo menos cinco anos após o diagnóstico dessa doença no estágio inicial é superior a 99%. No entanto, essa taxa diminui para cerca de 25% se a detecção ocorre somente no último estágio. Nesse contexto, sistemas que auxiliem no diagnóstico precoce do melanoma podem desempenhar um papel de extrema importância, especialmente em regiões nas quais o acesso a dermatologistas é precário. Contudo, diferenciar um melanoma de lesões melanocíticas benignas pode ser uma tarefa desafiadora, mesmo para especialistas experientes. Para lidar com esse problema, nesta tese, propõe-se um sistema automático para detectação de melanoma a partir de uma simples fotografia digital, o qual baseia-se em modelos de representações esparsas. Os resultados apresentados pelo sistema proposto são promissores e sugerem que o sistema proposto pode potencialmente superar alternativas estado-da-arte e até mesmo médicos treinados.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信