利用领域知识侦测电脑活动中的内部威胁

W. T. Young, H. Goldberg, Alex Memory, James F. Sartain, T. Senator
{"title":"利用领域知识侦测电脑活动中的内部威胁","authors":"W. T. Young, H. Goldberg, Alex Memory, James F. Sartain, T. Senator","doi":"10.1109/SPW.2013.32","DOIUrl":null,"url":null,"abstract":"This paper reports the first set of results from a comprehensive set of experiments to detect realistic insider threat instances in a real corporate database of computer usage activity. It focuses on the application of domain knowledge to provide starting points for further analysis. Domain knowledge is applied (1) to select appropriate features for use by structural anomaly detection algorithms, (2) to identify features indicative of activity known to be associated with insider threat, and (3) to model known or suspected instances of insider threat scenarios. We also introduce a visual language for specifying anomalies across different types of data, entities, baseline populations, and temporal ranges. Preliminary results of our experiments on two months of live data suggest that these methods are promising, with several experiments providing area under the curve scores close to 1.0 and lifts ranging from ×20 to ×30 over random.","PeriodicalId":383569,"journal":{"name":"2013 IEEE Security and Privacy Workshops","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Use of Domain Knowledge to Detect Insider Threats in Computer Activities\",\"authors\":\"W. T. Young, H. Goldberg, Alex Memory, James F. Sartain, T. Senator\",\"doi\":\"10.1109/SPW.2013.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the first set of results from a comprehensive set of experiments to detect realistic insider threat instances in a real corporate database of computer usage activity. It focuses on the application of domain knowledge to provide starting points for further analysis. Domain knowledge is applied (1) to select appropriate features for use by structural anomaly detection algorithms, (2) to identify features indicative of activity known to be associated with insider threat, and (3) to model known or suspected instances of insider threat scenarios. We also introduce a visual language for specifying anomalies across different types of data, entities, baseline populations, and temporal ranges. Preliminary results of our experiments on two months of live data suggest that these methods are promising, with several experiments providing area under the curve scores close to 1.0 and lifts ranging from ×20 to ×30 over random.\",\"PeriodicalId\":383569,\"journal\":{\"name\":\"2013 IEEE Security and Privacy Workshops\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Security and Privacy Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW.2013.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2013.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

本文报告了一组综合实验的第一组结果,以检测真实公司计算机使用活动数据库中的真实内部威胁实例。它侧重于领域知识的应用,为进一步的分析提供起点。应用领域知识(1)选择结构异常检测算法使用的适当特征,(2)识别指示已知与内部威胁相关活动的特征,以及(3)对已知或可疑的内部威胁场景实例进行建模。我们还介绍了一种可视化语言,用于指定跨不同类型的数据、实体、基线人口和时间范围的异常情况。我们对两个月的实时数据进行的实验的初步结果表明,这些方法是有希望的,有几个实验提供的曲线下面积得分接近1.0,提升范围从×20到×30随机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Domain Knowledge to Detect Insider Threats in Computer Activities
This paper reports the first set of results from a comprehensive set of experiments to detect realistic insider threat instances in a real corporate database of computer usage activity. It focuses on the application of domain knowledge to provide starting points for further analysis. Domain knowledge is applied (1) to select appropriate features for use by structural anomaly detection algorithms, (2) to identify features indicative of activity known to be associated with insider threat, and (3) to model known or suspected instances of insider threat scenarios. We also introduce a visual language for specifying anomalies across different types of data, entities, baseline populations, and temporal ranges. Preliminary results of our experiments on two months of live data suggest that these methods are promising, with several experiments providing area under the curve scores close to 1.0 and lifts ranging from ×20 to ×30 over random.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信