Hamed Gorjiara, Weiyu Luo, A. Lee, G. Xu, Brian Demsky
{"title":"检查弱持久性模型的健壮性","authors":"Hamed Gorjiara, Weiyu Luo, A. Lee, G. Xu, Brian Demsky","doi":"10.1145/3519939.3523723","DOIUrl":null,"url":null,"abstract":"Persistent memory (PM) technologies offer performance close to DRAM with persistence. Persistent memory enables programs to directly modify persistent data through normal load and store instructions bypassing heavyweight OS system calls for persistency. However, these stores are not made immediately made persistent, the developer must manually flush the corresponding cache lines to force the data to be written to persistent memory. While state-of-the-art testing tools can help developers find and fix persistency bugs, prior studies have shown fixing persistency bugs on average takes a couple of weeks for PM developers. The developer has to manually inspect the execution to identify the root cause of the problem. In addition, most of the existing state-of-the-art testing tools require heavy user annotations to detect bugs without visible symptoms such as a segmentation fault. In this paper, we present robustness as a sufficient correctness condition to ensure that program executions are free from missing flush bugs. We develop an algorithm for checking robustness and have implemented this algorithm in the PSan tool. PSan can help developers both identify silent data corruption bugs and localize bugs in large traces to the problematic memory operations that are missing flush operations. We have evaluated PSan on a set of concurrent indexes, persistent memory libraries, and two popular real-world applications. We found 48 bugs in these benchmarks that 17 of them were not reported before.","PeriodicalId":140942,"journal":{"name":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Checking robustness to weak persistency models\",\"authors\":\"Hamed Gorjiara, Weiyu Luo, A. Lee, G. Xu, Brian Demsky\",\"doi\":\"10.1145/3519939.3523723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistent memory (PM) technologies offer performance close to DRAM with persistence. Persistent memory enables programs to directly modify persistent data through normal load and store instructions bypassing heavyweight OS system calls for persistency. However, these stores are not made immediately made persistent, the developer must manually flush the corresponding cache lines to force the data to be written to persistent memory. While state-of-the-art testing tools can help developers find and fix persistency bugs, prior studies have shown fixing persistency bugs on average takes a couple of weeks for PM developers. The developer has to manually inspect the execution to identify the root cause of the problem. In addition, most of the existing state-of-the-art testing tools require heavy user annotations to detect bugs without visible symptoms such as a segmentation fault. In this paper, we present robustness as a sufficient correctness condition to ensure that program executions are free from missing flush bugs. We develop an algorithm for checking robustness and have implemented this algorithm in the PSan tool. PSan can help developers both identify silent data corruption bugs and localize bugs in large traces to the problematic memory operations that are missing flush operations. We have evaluated PSan on a set of concurrent indexes, persistent memory libraries, and two popular real-world applications. We found 48 bugs in these benchmarks that 17 of them were not reported before.\",\"PeriodicalId\":140942,\"journal\":{\"name\":\"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3519939.3523723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3519939.3523723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Persistent memory (PM) technologies offer performance close to DRAM with persistence. Persistent memory enables programs to directly modify persistent data through normal load and store instructions bypassing heavyweight OS system calls for persistency. However, these stores are not made immediately made persistent, the developer must manually flush the corresponding cache lines to force the data to be written to persistent memory. While state-of-the-art testing tools can help developers find and fix persistency bugs, prior studies have shown fixing persistency bugs on average takes a couple of weeks for PM developers. The developer has to manually inspect the execution to identify the root cause of the problem. In addition, most of the existing state-of-the-art testing tools require heavy user annotations to detect bugs without visible symptoms such as a segmentation fault. In this paper, we present robustness as a sufficient correctness condition to ensure that program executions are free from missing flush bugs. We develop an algorithm for checking robustness and have implemented this algorithm in the PSan tool. PSan can help developers both identify silent data corruption bugs and localize bugs in large traces to the problematic memory operations that are missing flush operations. We have evaluated PSan on a set of concurrent indexes, persistent memory libraries, and two popular real-world applications. We found 48 bugs in these benchmarks that 17 of them were not reported before.