平衡整体和局部:改进图像字幕与增强变压器模型

Haotian Xian, Baoyi Guo, Youyu Zhou
{"title":"平衡整体和局部:改进图像字幕与增强变压器模型","authors":"Haotian Xian, Baoyi Guo, Youyu Zhou","doi":"10.1109/AINIT59027.2023.10212804","DOIUrl":null,"url":null,"abstract":"This article proposes a Transformer-based image captioning model using computer vision and natural language processing techniques. The model is based on Multi-Featured Attention Module and Grid-Augmented Module and outperforms the original Transformer model on all evaluation metrics. Specifically, with a beam size of 7, the model achieves a BLEU-4 score of 0.409 and a CIDEr score of 1.008.","PeriodicalId":276778,"journal":{"name":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balanced Overall and Local: Improving Image Captioning with Enhanced Transformer Model\",\"authors\":\"Haotian Xian, Baoyi Guo, Youyu Zhou\",\"doi\":\"10.1109/AINIT59027.2023.10212804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a Transformer-based image captioning model using computer vision and natural language processing techniques. The model is based on Multi-Featured Attention Module and Grid-Augmented Module and outperforms the original Transformer model on all evaluation metrics. Specifically, with a beam size of 7, the model achieves a BLEU-4 score of 0.409 and a CIDEr score of 1.008.\",\"PeriodicalId\":276778,\"journal\":{\"name\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINIT59027.2023.10212804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINIT59027.2023.10212804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用计算机视觉和自然语言处理技术,提出了一种基于transformer的图像字幕模型。该模型基于多特征注意力模块和网格增强模块,在所有评价指标上都优于原Transformer模型。其中,当光束尺寸为7时,该模型的BLEU-4得分为0.409,CIDEr得分为1.008。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balanced Overall and Local: Improving Image Captioning with Enhanced Transformer Model
This article proposes a Transformer-based image captioning model using computer vision and natural language processing techniques. The model is based on Multi-Featured Attention Module and Grid-Augmented Module and outperforms the original Transformer model on all evaluation metrics. Specifically, with a beam size of 7, the model achieves a BLEU-4 score of 0.409 and a CIDEr score of 1.008.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信