利用机器学习分析软件定义网络中的DDoS攻击

Anshika Sharma, H. Chauhan, Harleen Kaur, Himanshi Babbar
{"title":"利用机器学习分析软件定义网络中的DDoS攻击","authors":"Anshika Sharma, H. Chauhan, Harleen Kaur, Himanshi Babbar","doi":"10.1109/IITCEE57236.2023.10090959","DOIUrl":null,"url":null,"abstract":"The most practical configurable network is Software Defined Networking (SDN). SDN delineates the network's control layer from the data layer, while operationally integrating them. With global visibility into network status, the's logical centralized control improves network management. However, centralized management introduces new security risks. One of the most attractive victims of distributed denial of service (DDoS) attacks is the SDN control platform. Due to machine learning (ML) performance and unavoidable advantages against fingerprint vulnerabilities, this article proposes and considers a ML solution for protecting against DDoS attacks in SDN. ML techniques are evaluated in both, a theoretical format and a practical setup such that SDN controllers are disclosed to DDoS-attacks in order to reach significant deductions about ML-based cybersecurity of future networking protocols.","PeriodicalId":124653,"journal":{"name":"2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of DDoS Attacks in Software Defined Networking using Machine Learning\",\"authors\":\"Anshika Sharma, H. Chauhan, Harleen Kaur, Himanshi Babbar\",\"doi\":\"10.1109/IITCEE57236.2023.10090959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most practical configurable network is Software Defined Networking (SDN). SDN delineates the network's control layer from the data layer, while operationally integrating them. With global visibility into network status, the's logical centralized control improves network management. However, centralized management introduces new security risks. One of the most attractive victims of distributed denial of service (DDoS) attacks is the SDN control platform. Due to machine learning (ML) performance and unavoidable advantages against fingerprint vulnerabilities, this article proposes and considers a ML solution for protecting against DDoS attacks in SDN. ML techniques are evaluated in both, a theoretical format and a practical setup such that SDN controllers are disclosed to DDoS-attacks in order to reach significant deductions about ML-based cybersecurity of future networking protocols.\",\"PeriodicalId\":124653,\"journal\":{\"name\":\"2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITCEE57236.2023.10090959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITCEE57236.2023.10090959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最实用的可配置网络是软件定义网络(SDN)。SDN从数据层描述网络的控制层,同时在操作上将它们集成在一起。通过对网络状态的全局可见性,其逻辑集中控制改善了网络管理。但是,集中式管理带来了新的安全风险。分布式拒绝服务(DDoS)攻击的最大受害者之一是SDN控制平台。由于机器学习(ML)的性能和对指纹漏洞不可避免的优势,本文提出并考虑了一种在SDN中防止DDoS攻击的ML解决方案。机器学习技术在理论格式和实际设置两方面都进行了评估,这样SDN控制器就会被披露给ddos攻击,以便对未来网络协议的基于机器学习的网络安全进行重大推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of DDoS Attacks in Software Defined Networking using Machine Learning
The most practical configurable network is Software Defined Networking (SDN). SDN delineates the network's control layer from the data layer, while operationally integrating them. With global visibility into network status, the's logical centralized control improves network management. However, centralized management introduces new security risks. One of the most attractive victims of distributed denial of service (DDoS) attacks is the SDN control platform. Due to machine learning (ML) performance and unavoidable advantages against fingerprint vulnerabilities, this article proposes and considers a ML solution for protecting against DDoS attacks in SDN. ML techniques are evaluated in both, a theoretical format and a practical setup such that SDN controllers are disclosed to DDoS-attacks in order to reach significant deductions about ML-based cybersecurity of future networking protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信