基于参数混合模型的多类多标记图像标注

Zhiyong Wang, W. Siu, D. Feng
{"title":"基于参数混合模型的多类多标记图像标注","authors":"Zhiyong Wang, W. Siu, D. Feng","doi":"10.1109/MMSP.2008.4665153","DOIUrl":null,"url":null,"abstract":"Image annotation, which labels an image with a set of semantic terms so as to bridge the semantic gap between low level features and high level semantics in visual information retrieval, is generally posed as a classification problem. Recently, multi-label classification has been investigated for image annotation since an image presents rich contents and can be associated with multiple concepts (i.e. labels). In this paper, a parametric mixture model based multi-class multi-labeling approach is proposed to tackle image annotation. Instead of building classifiers to learn individual labels exclusively, we model images with parametric mixture models so that the mixture characteristics of labels can be simultaneously exploited in both training and annotation processes. Our proposed method has been benchmarked with several state-of-the-art methods and achieved promising results.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Image annotation with parametric mixture model based multi-class multi-labeling\",\"authors\":\"Zhiyong Wang, W. Siu, D. Feng\",\"doi\":\"10.1109/MMSP.2008.4665153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image annotation, which labels an image with a set of semantic terms so as to bridge the semantic gap between low level features and high level semantics in visual information retrieval, is generally posed as a classification problem. Recently, multi-label classification has been investigated for image annotation since an image presents rich contents and can be associated with multiple concepts (i.e. labels). In this paper, a parametric mixture model based multi-class multi-labeling approach is proposed to tackle image annotation. Instead of building classifiers to learn individual labels exclusively, we model images with parametric mixture models so that the mixture characteristics of labels can be simultaneously exploited in both training and annotation processes. Our proposed method has been benchmarked with several state-of-the-art methods and achieved promising results.\",\"PeriodicalId\":402287,\"journal\":{\"name\":\"2008 IEEE 10th Workshop on Multimedia Signal Processing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 10th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2008.4665153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

图像标注通常被认为是一个分类问题,用一组语义术语对图像进行标注,以弥补视觉信息检索中低级特征和高级语义之间的语义差距。由于图像内容丰富,可以与多个概念(即标签)相关联,近年来,多标签分类成为图像标注的研究热点。本文提出了一种基于参数混合模型的多类多标记方法来解决图像标注问题。我们使用参数混合模型对图像进行建模,从而可以在训练和标注过程中同时利用标签的混合特征,而不是构建分类器来单独学习单个标签。我们提出的方法已经与几个最先进的方法进行了基准测试,并取得了可喜的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image annotation with parametric mixture model based multi-class multi-labeling
Image annotation, which labels an image with a set of semantic terms so as to bridge the semantic gap between low level features and high level semantics in visual information retrieval, is generally posed as a classification problem. Recently, multi-label classification has been investigated for image annotation since an image presents rich contents and can be associated with multiple concepts (i.e. labels). In this paper, a parametric mixture model based multi-class multi-labeling approach is proposed to tackle image annotation. Instead of building classifiers to learn individual labels exclusively, we model images with parametric mixture models so that the mixture characteristics of labels can be simultaneously exploited in both training and annotation processes. Our proposed method has been benchmarked with several state-of-the-art methods and achieved promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信