基于支持向量回归的SPIDAR标定

Pierre Boudoin, H. Maaref, S. Otmane, M. Mallem
{"title":"基于支持向量回归的SPIDAR标定","authors":"Pierre Boudoin, H. Maaref, S. Otmane, M. Mallem","doi":"10.1109/IPTA.2010.5586748","DOIUrl":null,"url":null,"abstract":"This paper aims to present all the study done on the SPIDAR, which is a tracking and haptic device, in order to improve its accuracy on the given position. Firstly we proposed a new semi-automatic initialization technique for this device using an optical tracking system. Then, we propose to use Support Vector Regression (SVR) to calibrate the SPIDAR in order to reduce location errors. We obtained very good results with this calibration, since we reduced the mean error by more than 50%.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SPIDAR calibration using Support Vector Regression\",\"authors\":\"Pierre Boudoin, H. Maaref, S. Otmane, M. Mallem\",\"doi\":\"10.1109/IPTA.2010.5586748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to present all the study done on the SPIDAR, which is a tracking and haptic device, in order to improve its accuracy on the given position. Firstly we proposed a new semi-automatic initialization technique for this device using an optical tracking system. Then, we propose to use Support Vector Regression (SVR) to calibrate the SPIDAR in order to reduce location errors. We obtained very good results with this calibration, since we reduced the mean error by more than 50%.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文的目的是为了提高跟踪触觉装置SPIDAR在给定位置上的精度而进行的所有研究。首先,我们提出了一种利用光学跟踪系统的半自动初始化技术。然后,我们提出使用支持向量回归(SVR)对SPIDAR进行校准,以减少定位误差。通过这次校准,我们获得了非常好的结果,因为我们将平均误差降低了50%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPIDAR calibration using Support Vector Regression
This paper aims to present all the study done on the SPIDAR, which is a tracking and haptic device, in order to improve its accuracy on the given position. Firstly we proposed a new semi-automatic initialization technique for this device using an optical tracking system. Then, we propose to use Support Vector Regression (SVR) to calibrate the SPIDAR in order to reduce location errors. We obtained very good results with this calibration, since we reduced the mean error by more than 50%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信