基于特征构建的物体识别表征学习框架

Muhammad H. Zayyan, S. Elmougy, M. F. Alrahmawy
{"title":"基于特征构建的物体识别表征学习框架","authors":"Muhammad H. Zayyan, S. Elmougy, M. F. Alrahmawy","doi":"10.21608/mjcis.2018.311995","DOIUrl":null,"url":null,"abstract":"In this paper, we recognize objects within images by collecting information from a large number of random-size patches of the image. The different backgrounds accompany the foreground object demand to have a learning system to identify each patch as belonging to the object category or to the background category. We strengthen a recent method called Evolution-COnstructed (ECO), which is based on the ensemble learning approach which combines several weak classifier. The improvement is relying on decreasing the overfitting problem. Two different improving ideas are proposed: 1) Pooling operation, which is applied to the weak classifiers data, 2) Random Forest algorithm, which combines the weak classifiers outcomes. Experimental results are reported for classification of 9 categories of Caltech-101 data sets and proved that our modifications boost the performance over the base method and other existing methods.","PeriodicalId":253950,"journal":{"name":"Mansoura Journal for Computer and Information Sciences","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation Learning Framework of Object Recognition via Feature Construction\",\"authors\":\"Muhammad H. Zayyan, S. Elmougy, M. F. Alrahmawy\",\"doi\":\"10.21608/mjcis.2018.311995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we recognize objects within images by collecting information from a large number of random-size patches of the image. The different backgrounds accompany the foreground object demand to have a learning system to identify each patch as belonging to the object category or to the background category. We strengthen a recent method called Evolution-COnstructed (ECO), which is based on the ensemble learning approach which combines several weak classifier. The improvement is relying on decreasing the overfitting problem. Two different improving ideas are proposed: 1) Pooling operation, which is applied to the weak classifiers data, 2) Random Forest algorithm, which combines the weak classifiers outcomes. Experimental results are reported for classification of 9 categories of Caltech-101 data sets and proved that our modifications boost the performance over the base method and other existing methods.\",\"PeriodicalId\":253950,\"journal\":{\"name\":\"Mansoura Journal for Computer and Information Sciences\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mansoura Journal for Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/mjcis.2018.311995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mansoura Journal for Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjcis.2018.311995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过从图像的大量随机大小的补丁中收集信息来识别图像中的物体。伴随着前景对象的不同背景要求有一个学习系统来识别每个补丁属于对象类别或背景类别。我们加强了最近的一种称为进化构造(ECO)的方法,该方法基于集成学习方法,结合了几个弱分类器。改进依赖于减少过拟合问题。提出了两种不同的改进思路:1)池化操作,应用于弱分类器数据;2)随机森林算法,结合弱分类器的结果。对Caltech-101数据集的9个类别进行了分类实验,结果表明我们的改进提高了基本方法和其他现有方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation Learning Framework of Object Recognition via Feature Construction
In this paper, we recognize objects within images by collecting information from a large number of random-size patches of the image. The different backgrounds accompany the foreground object demand to have a learning system to identify each patch as belonging to the object category or to the background category. We strengthen a recent method called Evolution-COnstructed (ECO), which is based on the ensemble learning approach which combines several weak classifier. The improvement is relying on decreasing the overfitting problem. Two different improving ideas are proposed: 1) Pooling operation, which is applied to the weak classifiers data, 2) Random Forest algorithm, which combines the weak classifiers outcomes. Experimental results are reported for classification of 9 categories of Caltech-101 data sets and proved that our modifications boost the performance over the base method and other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信