{"title":"SDD线性系统的近m log n时间解算器","authors":"I. Koutis, G. Miller, Richard Peng","doi":"10.1109/FOCS.2011.85","DOIUrl":null,"url":null,"abstract":"We present an improved algorithm for solving symmetrically diagonally dominant linear systems. On input of an $n\\times n$ symmetric diagonally dominant matrix $A$ with $m$ non-zero entries and a vector $b$ such that $A\\bar{x} = b$ for some (unknown) vector $\\bar{x}$, our algorithm computes a vector $x$ such that $| |{x}-\\bar{x}| |_A1 in time. O tiled (m log n log (1/epsilon))^2. The solver utilizes in a standard way a 'preconditioning' chain of progressively sparser graphs. To claim the faster running time we make a two-fold improvement in the algorithm for constructing the chain. The new chain exploits previously unknown properties of the graph sparsification algorithm given in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger preconditioning properties.We also present an algorithm of independent interest that constructs nearly-tight low-stretch spanning trees in time Otiled (mlog n), a factor of O (log n) faster than the algorithm in [Abraham,Bartal,Neiman, FOCS 2008]. This speedup directly reflects on the construction time of the preconditioning chain.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"278","resultStr":"{\"title\":\"A Nearly-m log n Time Solver for SDD Linear Systems\",\"authors\":\"I. Koutis, G. Miller, Richard Peng\",\"doi\":\"10.1109/FOCS.2011.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an improved algorithm for solving symmetrically diagonally dominant linear systems. On input of an $n\\\\times n$ symmetric diagonally dominant matrix $A$ with $m$ non-zero entries and a vector $b$ such that $A\\\\bar{x} = b$ for some (unknown) vector $\\\\bar{x}$, our algorithm computes a vector $x$ such that $| |{x}-\\\\bar{x}| |_A1 in time. O tiled (m log n log (1/epsilon))^2. The solver utilizes in a standard way a 'preconditioning' chain of progressively sparser graphs. To claim the faster running time we make a two-fold improvement in the algorithm for constructing the chain. The new chain exploits previously unknown properties of the graph sparsification algorithm given in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger preconditioning properties.We also present an algorithm of independent interest that constructs nearly-tight low-stretch spanning trees in time Otiled (mlog n), a factor of O (log n) faster than the algorithm in [Abraham,Bartal,Neiman, FOCS 2008]. This speedup directly reflects on the construction time of the preconditioning chain.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"278\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Nearly-m log n Time Solver for SDD Linear Systems
We present an improved algorithm for solving symmetrically diagonally dominant linear systems. On input of an $n\times n$ symmetric diagonally dominant matrix $A$ with $m$ non-zero entries and a vector $b$ such that $A\bar{x} = b$ for some (unknown) vector $\bar{x}$, our algorithm computes a vector $x$ such that $| |{x}-\bar{x}| |_A1 in time. O tiled (m log n log (1/epsilon))^2. The solver utilizes in a standard way a 'preconditioning' chain of progressively sparser graphs. To claim the faster running time we make a two-fold improvement in the algorithm for constructing the chain. The new chain exploits previously unknown properties of the graph sparsification algorithm given in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger preconditioning properties.We also present an algorithm of independent interest that constructs nearly-tight low-stretch spanning trees in time Otiled (mlog n), a factor of O (log n) faster than the algorithm in [Abraham,Bartal,Neiman, FOCS 2008]. This speedup directly reflects on the construction time of the preconditioning chain.