SDD线性系统的近m log n时间解算器

I. Koutis, G. Miller, Richard Peng
{"title":"SDD线性系统的近m log n时间解算器","authors":"I. Koutis, G. Miller, Richard Peng","doi":"10.1109/FOCS.2011.85","DOIUrl":null,"url":null,"abstract":"We present an improved algorithm for solving symmetrically diagonally dominant linear systems. On input of an $n\\times n$ symmetric diagonally dominant matrix $A$ with $m$ non-zero entries and a vector $b$ such that $A\\bar{x} = b$ for some (unknown) vector $\\bar{x}$, our algorithm computes a vector $x$ such that $| |{x}-\\bar{x}| |_A1 in time. O tiled (m log n log (1/epsilon))^2. The solver utilizes in a standard way a 'preconditioning' chain of progressively sparser graphs. To claim the faster running time we make a two-fold improvement in the algorithm for constructing the chain. The new chain exploits previously unknown properties of the graph sparsification algorithm given in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger preconditioning properties.We also present an algorithm of independent interest that constructs nearly-tight low-stretch spanning trees in time Otiled (mlog n), a factor of O (log n) faster than the algorithm in [Abraham,Bartal,Neiman, FOCS 2008]. This speedup directly reflects on the construction time of the preconditioning chain.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"278","resultStr":"{\"title\":\"A Nearly-m log n Time Solver for SDD Linear Systems\",\"authors\":\"I. Koutis, G. Miller, Richard Peng\",\"doi\":\"10.1109/FOCS.2011.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an improved algorithm for solving symmetrically diagonally dominant linear systems. On input of an $n\\\\times n$ symmetric diagonally dominant matrix $A$ with $m$ non-zero entries and a vector $b$ such that $A\\\\bar{x} = b$ for some (unknown) vector $\\\\bar{x}$, our algorithm computes a vector $x$ such that $| |{x}-\\\\bar{x}| |_A1 in time. O tiled (m log n log (1/epsilon))^2. The solver utilizes in a standard way a 'preconditioning' chain of progressively sparser graphs. To claim the faster running time we make a two-fold improvement in the algorithm for constructing the chain. The new chain exploits previously unknown properties of the graph sparsification algorithm given in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger preconditioning properties.We also present an algorithm of independent interest that constructs nearly-tight low-stretch spanning trees in time Otiled (mlog n), a factor of O (log n) faster than the algorithm in [Abraham,Bartal,Neiman, FOCS 2008]. This speedup directly reflects on the construction time of the preconditioning chain.\",\"PeriodicalId\":326048,\"journal\":{\"name\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"278\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2011.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 278

摘要

提出了一种求解对称对角占优线性系统的改进算法。当输入一个$n\乘以n$对称对角占优矩阵$A$具有$m$非零项和一个向量$b$使得对于某个(未知)向量$\bar{x}$, $A\bar{x} = b$时,我们的算法计算一个向量$x$使得$| |{x}-\bar{x}| |_A1在时间上。O平铺(m log n log (1/))^2)求解器以一种标准的方式利用逐步稀疏图的“预处理”链。为了获得更快的运行时间,我们对构建链的算法进行了两倍的改进。新的链利用了[Koutis,Miller,Peng, FOCS 2010]中给出的图稀疏化算法先前未知的性质,允许更强的预处理性质。我们还提出了一种独立感兴趣的算法,该算法在时间(mlog n)内构建近紧低拉伸生成树,比[Abraham,Bartal,Neiman, FOCS 2008]中的算法快O (log n)倍。这种加速直接反映在预处理链的构建时间上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Nearly-m log n Time Solver for SDD Linear Systems
We present an improved algorithm for solving symmetrically diagonally dominant linear systems. On input of an $n\times n$ symmetric diagonally dominant matrix $A$ with $m$ non-zero entries and a vector $b$ such that $A\bar{x} = b$ for some (unknown) vector $\bar{x}$, our algorithm computes a vector $x$ such that $| |{x}-\bar{x}| |_A1 in time. O tiled (m log n log (1/epsilon))^2. The solver utilizes in a standard way a 'preconditioning' chain of progressively sparser graphs. To claim the faster running time we make a two-fold improvement in the algorithm for constructing the chain. The new chain exploits previously unknown properties of the graph sparsification algorithm given in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger preconditioning properties.We also present an algorithm of independent interest that constructs nearly-tight low-stretch spanning trees in time Otiled (mlog n), a factor of O (log n) faster than the algorithm in [Abraham,Bartal,Neiman, FOCS 2008]. This speedup directly reflects on the construction time of the preconditioning chain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信