V. F. Kanushin, Novosibirsk Russia Technologies, I. Ganagina, D. Goldobin
{"title":"用广义傅立叶级数展开的结果模拟地球表面局部区域的拟椭球面高度","authors":"V. F. Kanushin, Novosibirsk Russia Technologies, I. Ganagina, D. Goldobin","doi":"10.17285/0869-7035.0051","DOIUrl":null,"url":null,"abstract":"The article presents two methods of modeling discrete heights of a quasigeoid on a local area of the earth’s surface using a gen-eralized Fourier series. The first method is based on modeling the characteristics of the earth’s gravitational field on a plane and involves the use of a two-dimensional Fourier transform by an orthonormal system of trigonometric functions. The second method consists in the expansion of the quasigeoid heights in a Fourier series by an orthonormal system of spherical functions on a local area of the earth’s surface. The errors of approxima-tion of the obtained discrete values of the quasigeoid heights on the local territory are analyzed. It is shown that with the modern computing technology, the most accurate and technologically simple way to model the quasigeoid heights on local areas is to expand them into a Fourier series by an orthonormal system of spherical functions.","PeriodicalId":114489,"journal":{"name":"Giroskopiya i Navigatsiya","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling the Quasigeoid Heights on Local Areas of the Earth Surface by the Results of Expansion into a Generalized Fourier Series\",\"authors\":\"V. F. Kanushin, Novosibirsk Russia Technologies, I. Ganagina, D. Goldobin\",\"doi\":\"10.17285/0869-7035.0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents two methods of modeling discrete heights of a quasigeoid on a local area of the earth’s surface using a gen-eralized Fourier series. The first method is based on modeling the characteristics of the earth’s gravitational field on a plane and involves the use of a two-dimensional Fourier transform by an orthonormal system of trigonometric functions. The second method consists in the expansion of the quasigeoid heights in a Fourier series by an orthonormal system of spherical functions on a local area of the earth’s surface. The errors of approxima-tion of the obtained discrete values of the quasigeoid heights on the local territory are analyzed. It is shown that with the modern computing technology, the most accurate and technologically simple way to model the quasigeoid heights on local areas is to expand them into a Fourier series by an orthonormal system of spherical functions.\",\"PeriodicalId\":114489,\"journal\":{\"name\":\"Giroskopiya i Navigatsiya\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Giroskopiya i Navigatsiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17285/0869-7035.0051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Giroskopiya i Navigatsiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17285/0869-7035.0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling the Quasigeoid Heights on Local Areas of the Earth Surface by the Results of Expansion into a Generalized Fourier Series
The article presents two methods of modeling discrete heights of a quasigeoid on a local area of the earth’s surface using a gen-eralized Fourier series. The first method is based on modeling the characteristics of the earth’s gravitational field on a plane and involves the use of a two-dimensional Fourier transform by an orthonormal system of trigonometric functions. The second method consists in the expansion of the quasigeoid heights in a Fourier series by an orthonormal system of spherical functions on a local area of the earth’s surface. The errors of approxima-tion of the obtained discrete values of the quasigeoid heights on the local territory are analyzed. It is shown that with the modern computing technology, the most accurate and technologically simple way to model the quasigeoid heights on local areas is to expand them into a Fourier series by an orthonormal system of spherical functions.