用渗流理论研究一类理性预期泡沫中碰撞危险率的有限时间奇异行为

Maximilian Seyrich, D. Sornette
{"title":"用渗流理论研究一类理性预期泡沫中碰撞危险率的有限时间奇异行为","authors":"Maximilian Seyrich, D. Sornette","doi":"10.2139/ssrn.2722383","DOIUrl":null,"url":null,"abstract":"We present a plausible micro-founded model for the previously postulated power law finite time singular form of the crash hazard rate in the Johansen-Ledoit-Sornette model of rational expectation bubbles. The model is based on a percolation picture of the network of traders and the concept that clusters of connected traders share the same opinion. The key ingredient is the notion that a shift of position from buyer to seller of a sufficiently large group of traders can trigger a crash. This provides a formula to estimate the crash hazard rate by summation over percolation clusters above a minimum size of a power $s^a$ (with $a>1$) of the cluster sizes $s$, similarly to a generalized percolation susceptibility. The power $s^a$ of cluster sizes emerges from the super-linear dependence of group activity as a function of group size, previously documented in the literature. The crash hazard rate exhibits explosive finite-time singular behaviors when the control parameter (fraction of occupied sites, or density of traders in the network) approaches the percolation threshold $p_c$. Realistic dynamics are generated by modelling the density of traders on the percolation network by an Ornstein-Uhlenbeck process, whose memory controls the spontaneous excursion of the control parameter close to the critical region of bubble formation. Our numerical simulations recover the main stylized properties of the JLS model with intermittent explosive super-exponential bubbles interrupted by crashes.","PeriodicalId":269529,"journal":{"name":"Swiss Finance Institute Research Paper Series","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Micro-Foundation Using Percolation Theory of the Finite-Time Singular Behavior of the Crash Hazard Rate in a Class of Rational Expectation Bubbles\",\"authors\":\"Maximilian Seyrich, D. Sornette\",\"doi\":\"10.2139/ssrn.2722383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a plausible micro-founded model for the previously postulated power law finite time singular form of the crash hazard rate in the Johansen-Ledoit-Sornette model of rational expectation bubbles. The model is based on a percolation picture of the network of traders and the concept that clusters of connected traders share the same opinion. The key ingredient is the notion that a shift of position from buyer to seller of a sufficiently large group of traders can trigger a crash. This provides a formula to estimate the crash hazard rate by summation over percolation clusters above a minimum size of a power $s^a$ (with $a>1$) of the cluster sizes $s$, similarly to a generalized percolation susceptibility. The power $s^a$ of cluster sizes emerges from the super-linear dependence of group activity as a function of group size, previously documented in the literature. The crash hazard rate exhibits explosive finite-time singular behaviors when the control parameter (fraction of occupied sites, or density of traders in the network) approaches the percolation threshold $p_c$. Realistic dynamics are generated by modelling the density of traders on the percolation network by an Ornstein-Uhlenbeck process, whose memory controls the spontaneous excursion of the control parameter close to the critical region of bubble formation. Our numerical simulations recover the main stylized properties of the JLS model with intermittent explosive super-exponential bubbles interrupted by crashes.\",\"PeriodicalId\":269529,\"journal\":{\"name\":\"Swiss Finance Institute Research Paper Series\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swiss Finance Institute Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2722383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swiss Finance Institute Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2722383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对于理性预期泡沫的Johansen-Ledoit-Sornette模型中先前假设的幂律有限时间奇异形式的碰撞危险率,我们提出了一个似是而非的微观模型。该模型基于交易者网络的渗透图,以及相互关联的交易者群体拥有相同观点的概念。其中的关键因素是这样一种观念:一个足够大的交易员群体的头寸从买方转为卖方,就可能引发崩盘。这提供了一个公式,通过对最小大小为簇大小$s$的幂$s^a$(与$a>1$)以上的渗透簇求和来估计崩溃危险率,类似于广义渗透敏感性。集群规模的幂$s^a$来自于群体活动作为群体规模函数的超线性依赖,这在以前的文献中有记载。当控制参数(占用站点的比例,或网络中交易者的密度)接近渗透阈值$p_c$时,崩溃危险率表现出爆炸性的有限时间奇异行为。利用Ornstein-Uhlenbeck过程对渗透网络上的交易者密度进行建模,从而产生真实的动态,该过程的记忆控制着控制参数在靠近气泡形成临界区域的自发偏移。我们的数值模拟恢复了间歇爆炸超指数气泡被碰撞打断的JLS模型的主要风格化特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micro-Foundation Using Percolation Theory of the Finite-Time Singular Behavior of the Crash Hazard Rate in a Class of Rational Expectation Bubbles
We present a plausible micro-founded model for the previously postulated power law finite time singular form of the crash hazard rate in the Johansen-Ledoit-Sornette model of rational expectation bubbles. The model is based on a percolation picture of the network of traders and the concept that clusters of connected traders share the same opinion. The key ingredient is the notion that a shift of position from buyer to seller of a sufficiently large group of traders can trigger a crash. This provides a formula to estimate the crash hazard rate by summation over percolation clusters above a minimum size of a power $s^a$ (with $a>1$) of the cluster sizes $s$, similarly to a generalized percolation susceptibility. The power $s^a$ of cluster sizes emerges from the super-linear dependence of group activity as a function of group size, previously documented in the literature. The crash hazard rate exhibits explosive finite-time singular behaviors when the control parameter (fraction of occupied sites, or density of traders in the network) approaches the percolation threshold $p_c$. Realistic dynamics are generated by modelling the density of traders on the percolation network by an Ornstein-Uhlenbeck process, whose memory controls the spontaneous excursion of the control parameter close to the critical region of bubble formation. Our numerical simulations recover the main stylized properties of the JLS model with intermittent explosive super-exponential bubbles interrupted by crashes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信